In evolutionary biology, sequence space is a way of representing all possible sequences (for a protein, gene or genome). [1] [2] The sequence space has one dimension per amino acid or nucleotide in the sequence leading to highly dimensional spaces. [3] [4]
Most sequences in sequence space have no function, leaving relatively small regions that are populated by naturally occurring genes. [5] Each protein sequence is adjacent to all other sequences that can be reached through a single mutation. [6] It has been estimated that the whole functional protein sequence space has been explored by life on the Earth. [7] Evolution by natural selection can be visualised as the process of sampling nearby sequences in sequence space and moving to any with improved fitness over the current one.
A sequence space is usually laid out as a grid. For protein sequence spaces, each residue in the protein is represented by a dimension with 20 possible positions along that axis corresponding to the possible amino acids. [3] [4] Hence there are 400 possible dipeptides arranged in a 20x20 space but that expands to 10130 for even a small protein of 100 amino acids arranged in a space with 100 dimensions. Although such overwhelming multidimensionality cannot be visualised or represented diagrammatically, it provides a useful abstract model to think about the range of proteins and evolution from one sequence to another.
These highly multidimensional spaces can be compressed to 2 or 3 dimensions using principal component analysis. A fitness landscape is simply a sequence space with an extra vertical axis of fitness added for each sequence. [8]
Despite the diversity of protein superfamilies, sequence space is extremely sparsely populated by functional proteins. Most random protein sequences have no fold or function. [9] Enzyme superfamilies, therefore, exist as tiny clusters of active proteins in a vast empty space of non-functional sequence. [10] [11]
The density of functional proteins in sequence space, and the proximity of different functions to one another is a key determinant in understanding evolvability. [12] The degree of interpenetration of two neutral networks of different activities in sequence space will determine how easy it is to evolve from one activity to another. The more overlap between different activities in sequence space, the more cryptic variation for promiscuous activity will be. [13]
Protein sequence space has been compared to the Library of Babel , a theoretical library containing all possible books that are 410 pages long. [14] [15] In the Library of Babel, finding any book that made sense was impossible due to the sheer number and lack of order. The same would be true of protein sequences if it were not for natural selection, which has selected out only protein sequences that make sense. Additionally, each protein sequences is surrounded by a set of neighbours (point mutants) that are likely to have at least some function.
On the other hand, the effective "alphabet" of the sequence space may in fact be quite small, reducing the useful number of amino acids from 20 to a much lower number. For example, in an extremely simplified view, all amino acids can be sorted into two classes (hydrophobic/polar) by hydrophobicity and still allow many common structures to show up. Early life on Earth may have only four or five types of amino acids to work with, [16] and researches have shown that functional proteins can be created from wild-type ones by a similar alphabet-reduction process. [17] [18] Reduced alphabets are also useful in bioinformatics, as they provide an easy way of analyzing protein similarity. [19] [20]
A major focus in the field of protein engineering is on creating DNA libraries that sample regions of sequence space, often with the goal of finding mutants of proteins with enhanced functions compared to the wild type. These libraries are created either by using a wild type sequence as a template and applying one or more mutagenesis techniques to make different variants of it, or by creating proteins from scratch using artificial gene synthesis. These libraries are then screened or selected, and ones with improved phenotypes are used for the next round of mutagenesis.
The genetic code is the set of rules used by living cells to translate information encoded within genetic material into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from substitution,insertion or deletion of segments of DNA due to mobile genetic elements.
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.
Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.
Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different from the inverse problem of protein design.
A protein family is a group of evolutionarily related proteins. In many cases, a protein family has a corresponding gene family, in which each gene encodes a corresponding protein with a 1:1 relationship. The term "protein family" should not be confused with family as it is used in taxonomy.
Evolvability is defined as the capacity of a system for adaptive evolution. Evolvability is the ability of a population of organisms to not merely generate genetic diversity, but to generate adaptive genetic diversity, and thereby evolve through natural selection.
Protein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch or by making calculated variants of a known protein structure and its sequence. Rational protein design approaches make protein-sequence predictions that will fold to specific structures. These predicted sequences can then be validated experimentally through methods such as peptide synthesis, site-directed mutagenesis, or artificial gene synthesis.
A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.
Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis, selection and amplification. It can be performed in vivo, or in vitro. Directed evolution is used both for protein engineering as an alternative to rationally designing modified proteins, as well as for experimental evolution studies of fundamental evolutionary principles in a controlled, laboratory environment.
The TIM barrel, also known as an alpha/beta barrel, is a conserved protein fold consisting of eight alpha helices (α-helices) and eight parallel beta strands (β-strands) that alternate along the peptide backbone. The structure is named after triose-phosphate isomerase, a conserved metabolic enzyme. TIM barrels are ubiquitous, with approximately 10% of all enzymes adopting this fold. Further, five of seven enzyme commission (EC) enzyme classes include TIM barrel proteins. The TIM barrel fold is evolutionarily ancient, with many of its members possessing little similarity today, instead falling within the twilight zone of sequence similarity.
Neutral mutations are changes in DNA sequence that are neither beneficial nor detrimental to the ability of an organism to survive and reproduce. In population genetics, mutations in which natural selection does not affect the spread of the mutation in a species are termed neutral mutations. Neutral mutations that are inheritable and not linked to any genes under selection will be lost or will replace all other alleles of the gene. That loss or fixation of the gene proceeds based on random sampling known as genetic drift. A neutral mutation that is in linkage disequilibrium with other alleles that are under selection may proceed to loss or fixation via genetic hitchhiking and/or background selection.
An expanded genetic code is an artificially modified genetic code in which one or more specific codons have been re-allocated to encode an amino acid that is not among the 22 common naturally-encoded proteinogenic amino acids.
Site saturation mutagenesis (SSM), or simply site saturation, is a random mutagenesis technique used in protein engineering, in which a single codon or set of codons is substituted with all possible amino acids at the position. There are many variants of the site saturation technique, from paired site saturation (saturating two positions in every mutant in the library) to scanning site saturation (performing a site saturation at every site in the protein, resulting in a library of size [20^(number of residues in the protein)] that contains every possible point mutant of the protein).
A circular permutation is a relationship between proteins whereby the proteins have a changed order of amino acids in their peptide sequence. The result is a protein structure with different connectivity, but overall similar three-dimensional (3D) shape. In 1979, the first pair of circularly permuted proteins – concanavalin A and lectin – were discovered; over 2000 such proteins are now known.
Enzyme promiscuity is the ability of an enzyme to catalyze an unexpected side reaction in addition to its main reaction. Although enzymes are remarkably specific catalysts, they can often perform side reactions in addition to their main, native catalytic activity. These wild activities are usually slow relative to the main activity and are under neutral selection. Despite ordinarily being physiologically irrelevant, under new selective pressures, these activities may confer a fitness benefit therefore prompting the evolution of the formerly promiscuous activity to become the new main activity. An example of this is the atrazine chlorohydrolase from Pseudomonas sp. ADP evolved from melamine deaminase, which has very small promiscuous activity toward atrazine, a man-made chemical.
Ancestral sequence reconstruction (ASR) – also known as ancestral gene/sequence reconstruction/resurrection – is a technique used in the study of molecular evolution. The method uses related sequences to reconstruct an "ancestral" gene from a multiple sequence alignment.
A neutral network is a set of genes all related by point mutations that have equivalent function or fitness. Each node represents a gene sequence and each line represents the mutation connecting two sequences. Neutral networks can be thought of as high, flat plateaus in a fitness landscape. During neutral evolution, genes can randomly move through neutral networks and traverse regions of sequence space which may have consequences for robustness and evolvability.
De novo gene birth is the process by which new genes evolve from non-coding DNA. De novo genes represent a subset of novel genes, and may be protein-coding or instead act as RNA genes. The processes that govern de novo gene birth are not well understood, although several models exist that describe possible mechanisms by which de novo gene birth may occur.
Erich Bornberg-Bauer is an Austrian biochemist, theoretical biologist and bioinformatician.