Sphaerotilus natans

Last updated

Sphaerotilus natans
Sphaerotilus natansD.jpeg
Submerged S. natans colonies with floating insect in the lower right for scale. Beige color shown is typical of aerated sewage treatment plants, but color may vary through grey toward black downstream of septic sewage or into brighter orange from precipitated ferric oxide.
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Sphaerotilus

Kützing 1833
Species:
S. natans
Binomial name
Sphaerotilus natans
Kützing 1833

Sphaerotilus natans is an aquatic periphyton organism associated with polluted water. It forms colonies commonly known as "sewage fungus", but later identified as tightly sheathed filamentous bacteria. [1]

Contents

Morphology

Straight or smoothly curved filaments 1.5 µm in diameter and 100 to more than 500 µm in length are formed by rod-shaped cells with clear septa growing within a long, tubular sheath. An adhesive basal element at one end of the filament can aid attachment to solid surfaces. [2] The sheath offers some protection from predators, and the ability to anchor in flowing water allows access to a passing stream of food and nutrients. [3] Individual mature cells swarm out of the protective tube to colonize new sites. [4] Each motile mature cell has an intertwined bundle of flagella appearing as a single flagellum consisting of a long filament with a short hook and a basal body complex, but it is distinguishable by electron microscope as 10 to 30 strands with diameters of 12.5 to 16 nm each. S. natans stores reserves of poly- beta -hydroxybutyrate as internal globules making up 30 to 40% of the dry weight of a colony. [3] Gram and Neisser staining reactions are negative. [5]

Habitat

S. natans requires dissolved simple sugars or organic acids as a food supply, but needs less phosphorus than many competing organisms and can tolerate low oxygen concentrations. [5] Capability to deposit elemental sulfur intracellularly in the presence of hydrogen sulfide is believed to be a detoxifying mechanism. S. natans requires either cobalamin or methionine as a trace nutrient. [3] S. natans filaments can aid development of a periphyton biofilm trapping suspended particles and stabilizing colonies of other organisms including Klebsiella and Pseudomonas . [2]

S. natans is described as a key taxon in sewage fungus, a polymicrobial biofilm that proliferates in rivers with a high organic loading [6] [7] [8] such as from sewage discharges, industrial effluents or runoff from airport de-icing. [9] It is also implicated in active sludge bulking [10]

Significance

Sphaerotilus natans is often associated with a buoyant floc (or "bulking sludge") causing poor solids separation in activated sludge clarifiers of secondary sewage treatment. [4] Metal surfaces covered with S. natans may experience accelerated corrosion if the slime creates a barrier causing differential oxygen concentrations. [11] S. natans slimes may reduce quality of paper produced by paper mills using recycled water streams. [2]

Related Research Articles

<span class="mw-page-title-main">Biosolids</span> Decontaminated sewage sludge

Biosolids are solid organic matter recovered from a sewage treatment process and used as fertilizer. In the past, it was common for farmers to use animal manure to improve their soil fertility. In the 1920s, the farming community began also to use sewage sludge from local wastewater treatment plants. Scientific research over many years has confirmed that these biosolids contain similar nutrients to those in animal manures. Biosolids that are used as fertilizer in farming are usually treated to help to prevent disease-causing pathogens from spreading to the public. Some sewage sludge can not qualify as biosolids due to persistent, bioaccumulative and toxic chemicals, radionuclides, and heavy metals at levels sufficient to contaminate soil and water when applied to land.

<span class="mw-page-title-main">Constructed wetland</span> Artificial wetland to treat municipal or industrial wastewater, greywater or stormwater runoff

A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development. Constructed wetlands are engineered systems that use the natural functions of vegetation, soil, and organisms to provide secondary treatment to wastewater. The design of the constructed wetland has to be adjusted according to the type of wastewater to be treated. Constructed wetlands have been used in both centralized and decentralized wastewater systems. Primary treatment is recommended when there is a large amount of suspended solids or soluble organic matter.

<span class="mw-page-title-main">Activated sludge</span> Wastewater treatment process using aeration and a biological floc

The activated sludgeprocess is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air and microorganisms to biologically oxidize organic pollutants, producing a waste sludge containing the oxidized material.

<span class="mw-page-title-main">Septic drain field</span> Type of subsurface wastewater disposal facility

Septic drain fields, also called leach fields or leach drains, are subsurface wastewater disposal facilities used to remove contaminants and impurities from the liquid that emerges after anaerobic digestion in a septic tank. Organic materials in the liquid are catabolized by a microbial ecosystem.

<span class="mw-page-title-main">River ecosystem</span> Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

<span class="mw-page-title-main">Secondary treatment</span> Biological treatment process for wastewater or sewage

Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.

<span class="mw-page-title-main">Sewage sludge treatment</span> Processes to manage and dispose of sludge during sewage treatment

Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on reducing potential health risks of disposal options. Water removal is the primary means of weight and volume reduction, while pathogen destruction is frequently accomplished through heating during thermophilic digestion, composting, or incineration. The choice of a sludge treatment method depends on the volume of sludge generated, and comparison of treatment costs required for available disposal options. Air-drying and composting may be attractive to rural communities, while limited land availability may make aerobic digestion and mechanical dewatering preferable for cities, and economies of scale may encourage energy recovery alternatives in metropolitan areas.

<span class="mw-page-title-main">Aerobic granular reactor</span>

Aerobic granular reactors (AGR) or Aerobic granular sludge (AGS) are a community of microbial organisms, typically around 0.5-3mm in diameter, that remove carbon, nitrogen, phosphorus and other pollutants in a single sludge system. It can also be used for wastewater treatments. Aerobic granular sludge is composed of bacteria, protozoa and fungi,which allows oxygen to follow in and biologically oxidize organic pollutants. AGS is a type of wastewater treatment process for sewages and/or industrial waste treatment. AGR was first discovered by UK engineers, Edward Ardern and W.T. Lockett who were researching better ways for sewage disposal. Another scientist by the name of Dr. Gilbert Fowler, who was at the University of Manchester working on an experiment based on aeration of sewage in a bottle coated with algae. Eventually, all three scientists were able to collaborate with one another to discover AGR/AGS.

<span class="mw-page-title-main">Trickling filter</span> Type of wastewater treatment system with a fixed bed of rocks or similar

A trickling filter is a type of wastewater treatment system. It consists of a fixed bed of rocks, coke, gravel, slag, polyurethane foam, sphagnum peat moss, ceramic, or plastic media over which sewage or other wastewater flows downward and causes a layer of microbial slime (biofilm) to grow, covering the bed of media. Aerobic conditions are maintained by splashing, diffusion, and either by forced-air flowing through the bed or natural convection of air if the filter medium is porous. The treatment of sewage or other wastewater with trickling filters is among the oldest and most well characterized treatment technologies.

Indicator organisms are used as a proxy to monitor conditions in a particular environment, ecosystem, area, habitat, or consumer product. Certain bacteria, fungi and helminth eggs are being used for various purposes.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

<span class="mw-page-title-main">Organisms involved in water purification</span>

Most organisms involved in water purification originate from the waste, wastewater or water stream itself or arrive as resting spore of some form from the atmosphere. In a very few cases, mostly associated with constructed wetlands, specific organisms are planted to maximise the efficiency of the process.

<span class="mw-page-title-main">Aerobic granulation</span>

The biological treatment of wastewater in the sewage treatment plant is often accomplished using conventional activated sludge systems. These systems generally require large surface areas for treatment and biomass separation units due to the generally poor settling properties of the sludge. Aerobic granules are a type of sludge that can self-immobilize flocs and microorganisms into spherical and strong compact structures. The advantages of aerobic granular sludge are excellent settleability, high biomass retention, simultaneous nutrient removal and tolerance to toxicity. Recent studies show that aerobic granular sludge treatment could be a potentially good method to treat high strength wastewaters with nutrients, toxic substances.

<i>Thioploca</i> Genus of bacteria

Thioploca is a genus of filamentous sulphur-oxidizing bacteria, in the order Thiotrichales. They inhabit both marine and freshwater environments, forming vast communities off the Pacific coast of South America and in other areas with a high organic matter sedimentation and bottom waters rich in nitrate and poor in oxygen. Their cells contain large vacuoles that occupy more than 80% of the cellular volume, used to store nitrate to oxidize sulphur for anaerobic respiration in the absence of oxygen, an important characteristic of the genus. With cell diameters ranging from 15-40 µm, they are some of the largest bacteria known. They provide an important link between the nitrogen and sulphur cycles, because they use both sulfur and nitrogen compounds. They secrete a sheath of mucus which they use as a tunnel to travel between sulphide-containing sediment and nitrate-containing sea water.

<span class="mw-page-title-main">Facultative lagoon</span>

Facultative lagoons are a type of waste stabilization pond used for biological treatment of industrial and domestic wastewater. Sewage or organic waste from food or fiber processing may be catabolized in a system of constructed ponds where adequate space is available to provide an average waste retention time exceeding a month. A series of ponds prevents mixing of untreated waste with treated wastewater and allows better control of waste residence time for uniform treatment efficiency.

<span class="mw-page-title-main">Rotating biological contactor</span> Biological process for wastewater treatment

A rotating biological contactor or RBC is a biological fixed-film treatment process used in the secondary treatment of wastewater following primary treatment. The primary treatment process involves removal of grit, sand and coarse suspended material through a screening process, followed by settling of suspended solids. The RBC process allows the wastewater to come in contact with a biological film in order to remove pollutants in the wastewater before discharge of the treated wastewater to the environment, usually a body of water. A rotating biological contactor is a type of secondary (biological) treatment process. It consists of a series of closely spaced, parallel discs mounted on a rotating shaft which is supported just above the surface of the wastewater. Microorganisms grow on the surface of the discs where biological degradation of the wastewater pollutants takes place.

<span class="mw-page-title-main">Sewage fungus</span>

Sewage fungus is a polymicrobial biofilm that proliferates in saprobic rivers and has been frequently used as a bioindicator of organic river pollution for the past century. Its presence has been strongly associated with discharges of untreated or inadequately treated sewage, yet its presence extends beyond these areas, with contributors including airport de-icers, papermill effluents, and agricultural runoff.

<span class="mw-page-title-main">Vermifilter</span> Aerobic treatment system, consisting of a biological reactor containing media

A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that purify the wastewater by removing pathogens and oxygen demand. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater, ensuring the treatment environment is aerobic for rapid decomposition of organic substances.

<span class="mw-page-title-main">Moving bed biofilm reactor</span> Type of wastewater treatment

Moving bed biofilm reactor (MBBR) is a type of wastewater treatment process that was first invented by Professor Hallvard Ødegaard at Norwegian University of Science and Technology in the late 1980s. The process takes place in an aeration tank with plastic carriers that a biofilm can grow on. The compact size and cheap wastewater treatment costs offers many advantages for the system. The main objective of using MBBR being water reuse and nutrient removal or recovery. In theory, wastewater will be no longer considered waste, it can be considered a resource.

<span class="mw-page-title-main">Imre Takács</span> Hungarian-Canadian environmental engineer

Imre Takács is a Hungarian-Canadian environmental engineer and process engineer. He is a founder and CEO of Dynamita SARL, based in France, and developer of process simulators and dynamic models for wastewater treatment plants.

References

  1. Fair, Geyer & Okun p.32-31
  2. 1 2 3 Pellegrin, V; Juretschko, S; Wagner, M; Cottenceau, G (1999). "Morphological and Biochemical Properties of a Sphaerotilus sp. Isolated From Paper Mill Slimes". Applied and Environmental Microbiology . 65 (1): 156–62. Bibcode:1999ApEnM..65..156P. doi:10.1128/AEM.65.1.156-162.1999. PMC   90997 . PMID   9872774.
  3. 1 2 3 Van Veen, WL; Mulder, EG; Deinema, MH (1978). "The Sphaerotilus-Leptothrix group of bacteria". Microbiological Reviews . 42 (2): 329–56. doi:10.1128/MMBR.42.2.329-356.1978. PMC   281433 . PMID   353479.
  4. 1 2 Hammer p.55
  5. 1 2 "Sphaerotilus natans". Environmental Business Specialists LLC. Retrieved 2012-09-26.
  6. Exton, B; Hassard, F; Medina-Vaya, A; Grabowski, RC (April 2024). "Undesirable river biofilms: The composition, environmental drivers, and occurrence of sewage fungus". Ecological Indicators. 161: 111949. doi:10.1016/j.ecolind.2024.111949. ISSN   1470-160X.
  7. Curtis, EJ (May 1969). "Sewage fungus: Its nature and effects". Water Research. 3 (5): 289–311. doi:10.1016/0043-1354(69)90084-0. ISSN   0043-1354.
  8. Gray, NF (November 1985). "HETEROTROPHIC SLIMES IN FLOWING WATERS". Biological Reviews. 60 (4): 499–548. doi:10.1111/j.1469-185X.1985.tb00621.x. ISSN   1464-7931.
  9. Exton, B; Hassard, F; Medina-Vaya, A; Grabowski, RC (March 2023). "Polybacterial shift in benthic river biofilms attributed to organic pollution – a prospect of a new biosentinel?". Hydrology Research. 54 (3): 348–59. doi:10.2166/nh.2023.114 via IWA Publishing.
  10. Richard, M; Hao, O; Jenkins, D (1985). "Growth Kinetics of Sphaerotilus Species and Their Significance in Activated Sludge Bulking". Journal (Water Pollution Control Federation). 57 (1): 68–81. ISSN   0043-1303.
  11. Betz pp.288&289

Further reading