Spontelectrics

Last updated

Spontelectrics is a form of solid state thin films with some peculiar physical properties.

Contents

Properties

When laid down as thin films tens to hundreds of molecular layers thick, a range of materials spontaneously generate large electric fields. The electric fields can be greater than 108 V/m. [1]

Spontelectric behaviour is intrinsic to the dipolar nature of the constituent molecules.

The detection (in ~2009) of spontaneous electric fields in numerous solid films prepared by vapour deposition raises fundamental questions about the nature of disordered materials. [2] [3] [4] [5] [6]

Related Research Articles

Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Joseph Valasek. Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics.

Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

<span class="mw-page-title-main">Organic field-effect transistor</span> Type of field-effect transistor

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric. One of the benefits of OFETs, especially compared with inorganic TFTs, is their unprecedented physical flexibility, which leads to biocompatible applications, for instance in the future health care industry of personalized biomedicines and bioelectronics.

Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:

<span class="mw-page-title-main">Electride</span> Ionic compound with electrons as the anion

An electride is an ionic compound in which an electron serves the role of the anion. Solutions of alkali metals in ammonia are electride salts. In the case of sodium, these blue solutions consist of [Na(NH3)6]+ and solvated electrons:

<span class="mw-page-title-main">Germanium telluride</span> Chemical compound

Germanium telluride (GeTe) is a chemical compound of germanium and tellurium and is a component of chalcogenide glasses. It shows semimetallic conduction and ferroelectric behaviour.

The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. It consists of the appearance of spin accumulation on the lateral surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on the opposing boundaries. In a cylindrical wire, the current-induced surface spins will wind around the wire. When the current direction is reversed, the directions of spin orientation is also reversed.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions.

<span class="mw-page-title-main">Erich Sackmann</span>

Erich Sackmann is a German experimental physicist and a pioneer of biophysics in Europe.

Discovered only as recently as 2006 by C.D. Stanciu and F. Hansteen and published in Physical Review Letters, this effect is generally called all-optical magnetization reversal. This magnetization reversal technique refers to a method of reversing magnetization in a magnet simply by circularly polarized light and where the magnetization direction is controlled by the light helicity. In particular, the direction of the angular momentum of the photons would set the magnetization direction without the need of an external magnetic field. In fact, this process could be seen as similar to magnetization reversal by spin injection. The only difference is that now, the angular momentum is supplied by the circularly polarized photons instead of the polarized electrons.

Electron nuclear double resonance (ENDOR) is a magnetic resonance technique for elucidating the molecular and electronic structure of paramagnetic species. The technique was first introduced to resolve interactions in electron paramagnetic resonance (EPR) spectra. It is currently practiced in a variety of modalities, mainly in the areas of biophysics and heterogeneous catalysis.

A trion is a localized excitation which consists of three charged particles. A negative trion consists of two electrons and one hole and a positive trion consists of two holes and one electron. The trion itself is a quasiparticle and is somewhat similar to an exciton, which is a complex of one electron and one hole. The trion has a ground singlet state (spin S = 1/2) and an excited triplet state (S = 3/2). Here singlet and triplet degeneracies originate not from the whole system but from the two identical particles in it. The half-integer spin value distinguishes trions from excitons in many phenomena; for example, energy states of trions, but not excitons, are split in an applied magnetic field. Trion states were predicted theoretically in 1958; they were observed experimentally in 1993 in CdTe/Cd1−xZnxTe quantum wells, and later in various other optically excited semiconductor structures. There are experimental proofs of their existence in nanotubes supported by theoretical studies. Despite numerous reports of experimental trion observations in different semiconductor heterostructures, there are serious concerns on the exact physical nature of the detected complexes. The originally foreseen 'true' trion particle has a delocalized wavefunction (at least at the scales of several Bohr radii) while recent studies reveal significant binding from charged impurities in real semiconductor quantum wells.

<span class="mw-page-title-main">Silicene</span> Two-dimensional allotrope of silicon

Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is much stronger than in multilayered graphene; and the oxidized form of silicene, 2D silica, has a very different chemical structure from graphene oxide.

In electromagnetism, a toroidal moment is an independent term in the multipole expansion of electromagnetic fields besides magnetic and electric multipoles. In the electrostatic multipole expansion, all charge and current distributions can be expanded into a complete set of electric and magnetic multipole coefficients. However, additional terms arise in an electrodynamic multipole expansion. The coefficients of these terms are given by the toroidal multipole moments as well as time derivatives of the electric and magnetic multipole moments. While electric dipoles can be understood as separated charges and magnetic dipoles as circular currents, axial toroidal dipoles describes toroidal (donut-shaped) charge arrangements whereas polar toroidal dipole correspond to the field of a solenoid bent into a torus.

Singlet fission is a spin-allowed process, unique to molecular photophysics, whereby one singlet excited state is converted into two triplet states. The phenomenon has been observed in molecular crystals, aggregates, disordered thin films, and covalently-linked dimers, where the chromophores are oriented such that the electronic coupling between singlet and the double triplet states is large. Being spin allowed, the process can occur very rapidly and out-compete radiative decay thereby producing two triplets with very high efficiency. The process is distinct from intersystem crossing, in that singlet fission does not involve a spin flip, but is mediated by two triplets coupled into an overall singlet. It has been proposed that singlet fission in organic photovoltaic devices could improve the photoconversion efficiencies.

<span class="mw-page-title-main">Two-photon circular dichroism</span>

Two-photon circular dichroism (TPCD), the nonlinear counterpart of electronic circular dichroism (ECD), is defined as the differences between the two-photon absorption (TPA) cross-sections obtained using left circular polarized light and right circular polarized light.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

A polar metal, metallic ferroelectric, or ferroelectric metal is a metal that contains an electric dipole moment. Its components have an ordered electric dipole. Such metals should be unexpected, because the charge should conduct by way of the free electrons in the metal and neutralize the polarized charge. However they do exist. Probably the first report of a polar metal was in single crystals of the cuprate superconductors YBa2Cu3O7−δ,. A polarization was observed along one (001) axis by pyroelectric effect measurements, and the sign of the polarization was shown to be reversible, while its magnitude could be increased by poling with an electric field. The polarization was found to disappear in the superconducting state. The lattice distortions responsible were considered to be a result of oxygen ion displacements induced by doped charges that break inversion symmetry. The effect was utilized for fabrication of pyroelectric detectors for space applications, having the advantage of large pyroelectric coefficient and low intrinsic resistance. Another substance family that can produce a polar metal is the nickelate perovskites. One example interpreted to show polar metallic behavior is lanthanum nickelate, LaNiO3. A thin film of LaNiO3 grown on the (111) crystal face of lanthanum aluminate, (LaAlO3) was interpreted to be both conductor and a polar material at room temperature. The resistivity of this system, however, shows an upturn with decreasing temperature, hence does not strictly adhere to the definition of a metal. Also, when grown 3 or 4 unit cells thick (1-2 nm) on the (100) crystal face of LaAlO3, the LaNiO3 can be a polar insulator or polar metal depending on the atomic termination of the surface. Lithium osmate, LiOsO3 also undergoes a ferrorelectric transition when it is cooled below 140K. The point group changes from R3c to R3c losing its centrosymmetry. At room temperature and below, lithium osmate is an electric conductor, in single crystal, polycrystalline or powder forms, and the ferroelectric form only appears below 140K. Above 140K the material behaves like a normal metal. Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator has been realized in LaAlO3/Ba0.8Sr0.2TiO3/SrTiO3 complex oxide heterostructures.

Suresh Kumar Bhatia is an Indian-born chemical engineer and professor emeritus at the School of Chemical Engineering, University of Queensland. He is known for his studies on porous media and catalytic and non-catalytic solid fluid reactions. He was awarded an ARC Australian Professorial Fellowship (2010–15) and is an elected fellow of the Indian Academy of Sciences (1993), and the Australian Academy of Technological Sciences and Engineering (2010). In 1993, the Council of Scientific and Industrial Research, the Indian government's peak agency for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to the engineering sciences.

<span class="mw-page-title-main">Patricia Thiel</span> American surface chemist (1953–2020)

Patricia Ann Thiel was an American chemist and materials scientist who served as a distinguished professor of chemistry at Iowa State University. She was known for her research on atomic-scale structures and processes on solid surfaces.

References

  1. Field, David; O. Plekan; A. Cassidy; R. Balog; N.C. Jones; J. Dunger (12 Mar 2013). "Spontaneous electric fields in solid films: spontelectrics". Int. Rev. Phys. Chem. 32 (3): 345–392. doi:10.1080/0144235X.2013.767109. S2CID   96405473.
  2. Plekan, Oksana; Andrew Cassidy; Richard Balog; Nykola C. Jones; David Field (2012). "Spontaneous electric fields in films of cis-methyl formate". Phys. Chem. Chem. Phys. 14 (28): 9972–9976. Bibcode:2012PCCP...14.9972P. doi:10.1039/C2CP41229B. PMID   22714668.
  3. Balog, R; Cicman P; Jones NC; Field D (Feb 2009). "Spontaneous dipole alignment in films of N2O". Phys. Rev. Lett. 102 (7): 073003. Bibcode:2009PhRvL.102g3003B. doi:10.1103/PhysRevLett.102.073003. PMID   19257663.
  4. Plekan, Oksana; A. Cassidy; R. Balog; N.C. Jones; D. Field (2011). "A new form of spontaneously polarized material". Phys. Chem. Chem. Phys. 13 (47): 21035–21044. Bibcode:2011PCCP...1321035P. doi:10.1039/C1CP22310K. PMID   22020313.
  5. Field, David; Oksana Plekan; Andrew Cassidy; Richard Balog; Nykola Jones (2011). "A new class of spontaneously polarized materials" (PDF). Europhysics News. 42 (6): 32–35. Bibcode:2011ENews..42...32F. doi: 10.1051/epn/2011605 .
  6. Cassidy, Andrew; O. Plekan; R. Balog; N.C. Jones; D. Field (2013). "Spontaneous electric fields in films of CF3Cl, CF2Cl2 and CFCl3". Phys. Chem. Chem. Phys. 15 (1): 108–113. Bibcode:2013PCCP...15..108C. doi:10.1039/C2CP43138F. PMID   23147680.