A technology-critical element (TCE) is a chemical element that is critical to modern and emerging technologies, [1] [2] [3] resulting in a striking increase in their usage. [1] [4] [5] [6] Similar terms include critical elements, [7] critical materials, [1] critical raw materials , [5] [8] energy-critical elements [4] and elements of security. [9]
Many advanced engineering applications, such as clean-energy production, communications and computing, use emergent technologies that utilize numerous chemical elements. [4] In 2013, the U.S. Department of Energy (DOE) created the Critical Materials Institute (CMI) to address the issue. [10] In 2015, the European COST Action TD1407 created a network of scientists working and interested on TCEs, from an environmental perspective to potential human health threats. [11]
A study estimated losses of 61 metals to help the development of circular economy strategies, showing that usespans of, often scarce, tech-critical metals are short. [12] [13]
The set of elements usually considered as TCEs vary depending on the source, but they usually include:
Seventeen rare-earth elements
The six platinum-group elements
Twelve assorted elements
Elements such as oxygen, silicon, and aluminum (among others) are also vital for electronics, but are not included in these lists due to their widespread abundance.
TCEs have a variety of engineering applications in fields such as energy storage, electronics, telecommunication, and transportation. [14] These elements are utilized in cellular phones, batteries, solar panel(s), electric motor(s), and fiber-optic cables. Emerging technologies also incorporate TCEs. Most notably, TCEs are used in the data networking of smart devices tied to the Internet of Things (IoT) and automation. [14]
Element | Compound | Applications |
---|---|---|
Gallium (Ga) | GaAs, GaN | Wafers for (a) integrated circuits in high-performance computers and telecommunications equipment and (b) LEDs, photodetectors, solar cells and medical equipment |
Trimethyl Ga, triethyl Ga | Epitaxial layering process for the production of LEDs | |
Germanium (Ge) | Ge | Substrate for wafers for high-efficiency photovoltaic cells |
Ge single crystals | Detectors (airport security) | |
Hafnium (Hf) | Hf | Aerospace alloys and ceramics |
HfO2 | Semiconductors and data storage devices | |
Indium (In) | In2O5Sn | Transparent conductive thin film coatings on flat-panel displays (e.g. liquid crystal displays) |
Niobium (Nb) | CuNbGaSe (CIGS) | Thin film solar cells |
HSLA ferro-Nb (60 % Nb), Nb metal | High-grade structural steel for vehicle bodies | |
NiNb | Superalloys for jet engines and turbine blades | |
Nb powder, Nb oxide | Surface acoustic wave filters (sensor and touch screen technologies) | |
Platinum-group metals (PGMs) | Pd, Pt, Rh metals | Catalytic converters for the car industry |
Platinum (Pt) | Pt metal | Catalyst refining of petroleum and magnetic coating of computer hard discs |
Iridium (Ir) | Ir | Crucibles for the electronics industry |
Osmium (Os) | Os alloys | High wear applications such as instrument pivots and electrical contacts |
Tantalum (Ta) | Ta oxide | Capacitors in automotive electronics, personal computers and cell phones |
Ta metal | Pacemakers, prosthetic devices | |
Tellurium (Te) | CdTe | Solar cells |
HgCdTe, BiTe | Thermal cooling devices and electronics products | |
Zirconium (Zr) | Zr | Ceramics for solid oxide fuel cells, jet turbine coatings, and smartphones |
The extraction and processing of TCEs may cause adverse environmental impacts. The reliance on TCEs and critical metals like cobalt can run the risk of the “green curse,” or using certain metals in green technologies whose mining may be damaging to the environment. [15]
The clearing of soil and deforestation that is involved with mining can impact the surrounding biodiversity through land degradation and habitat loss. Acid mine drainage can kill surrounding aquatic life and harm ecosystems. Mining activities and leaching of TCEs can pose significant hazards to human health. Wastewater produced by the processing of TCEs can contaminate groundwater and streams. Toxic dust containing concentrations of metals and other chemicals can be released into the air and surrounding bodies of water.
Deforestation caused by mining results in the release of stored carbon from the ground to the atmosphere in the form of carbon dioxide (CO2). [15]
Tantalum is a chemical element; it has symbol Ta and atomic number 73. Previously known as tantalium, it is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is highly corrosion-resistant. It is part of the refractory metals group, which are widely used as components of strong high-melting-point alloys. It is a group 5 element, along with vanadium and niobium, and it always occurs in geologic sources together with the chemically similar niobium, mainly in the mineral groups tantalite, columbite and coltan.
The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids, are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals. Compounds containing rare earths have diverse applications in electrical and electronic components, lasers, glass, magnetic materials, and industrial processes.
A period 4 element is one of the chemical elements in the fourth row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fourth period contains 18 elements beginning with potassium and ending with krypton – one element for each of the eighteen groups. It sees the first appearance of d-block in the table.
A neodymium magnet (also known as NdFeB, NIB or Neo magnet) is a permanent magnet made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. They are the most widely used type of rare-earth magnet.
The exploitation of natural resources describes using natural resources, often non-renewable or limited, for economic growth or development. Environmental degradation, human insecurity, and social conflict frequently accompany natural resource exploitation. The impacts of the depletion of natural resources include the decline of economic growth in local areas; however, the abundance of natural resources does not always correlate with a country's material prosperity. Many resource-rich countries, especially in the Global South, face distributional conflicts, where local bureaucracies mismanage or disagree on how resources should be used. Foreign industries also contribute to resource exploitation, where raw materials are outsourced from developing countries, with the local communities receiving little profit from the exchange. This is often accompanied by negative effects of economic growth around the affected areas such as inequality and pollution
Ames National Laboratory, formerly Ames Laboratory, is a United States Department of Energy national laboratory located in Ames, Iowa, and affiliated with Iowa State University. It is a top-level national laboratory for research on national security, energy, and the environment. The laboratory conducts research into areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration. It is located on the campus of Iowa State University.
A mechanical biological treatment (MBT) system is a type of waste processing facility that combines a sorting facility with a form of biological treatment such as composting or anaerobic digestion. MBT plants are designed to process mixed household waste as well as commercial and industrial wastes.
Natural resource economics deals with the supply, demand, and allocation of the Earth's natural resources. One main objective of natural resource economics is to better understand the role of natural resources in the economy in order to develop more sustainable methods of managing those resources to ensure their availability for future generations. Resource economists study interactions between economic and natural systems, with the goal of developing a sustainable and efficient economy.
Environmental impact of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change.
Cobalt is a chemical element; it has symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, somewhat brittle, gray metal.
IREL (India) Limited is an Indian Public Sector Undertaking based in Mumbai, Maharashtra. It specializes in mining and refining rare earth metals.
Energy Transition Minerals Ltd is an ASX-listed company focused on the exploration, development and financing of minerals that are critical to a low carbon future. The company’s current projects include the Kvanefjeld, located in Greenland, Villasrubias, located in Spain, and two Lithium projects located in the James Bay region in Canada.
American Elements is a global manufacturer and distributor of advanced materials with an over 35,000-page online product catalog and compendium of information on the chemical elements, advanced materials, and high technology applications. The company's headquarters and educational programs are based in Los Angeles, California. Its research and production facilities are located in Salt Lake City, Utah; Monterrey, Mexico;China; and Manchester, UK.
Michael Nathan Silver is a business executive, philanthropist, art collector, and commentator. He is the founder and CEO of American Elements, a global high-technology materials manufacturer. He helped establish the post-Cold War rare earth supply chain from China to the U.S. and Europe. His philanthropy includes sponsoring materials science and green technology conferences and educational television programs on high technology and contributing funding to the arts. He served as a trustee of the Natural History Museum of Los Angeles County and serves on the directors council of the Getty Museum and on the board of directors of the Institute of Contemporary Art in Los Angeles, CA. He writes and speaks on science education and Sino-American relations.
Material criticality is the determination of which materials that flow through an industry or economy are most important to the production process. It is a sub-category within the field of material flow analysis (MFA), which is a method to quantitatively analyze the flows of materials used for industrial production in an industry or economy. MFA is a useful tool to assess what impacts materials used in the industrial process have and how efficiently a given process uses them.
The rare earths trade dispute, between China on one side and several countries on the other, was over China's export restrictions on rare earth elements as well as tungsten and molybdenum. Rare earth metals are used to make powerful neodymium, praseodymium, dysprosium and terbium magnets, defense products and many electronics.
Since 2011 the European Commission has assessed every 3 years a list of Critical Raw Materials (CRMs) for the EU economy within its Raw Materials Initiative. To date, 14 CRMs were identified in 2011, 20 in 2014, 27 in 2017 and 30 in 2020. These materials are mainly used in energy transition and digital technologies. Then in March 2023 Commission President Ursula von der Leyen proposed the Critical Raw Materials Act, "for a regulation of the European Parliament and of the European Council establishing a framework for ensuring a secure and sustainable supply of critical raw materials". At the time, Europe depended on China for 98% of its rare-earth needs, 97% of its lithium supply and 93% of its magnesium supply.
Usage of electric cars damages people’s health and the environment less than similar sized internal combustion engine cars. While aspects of their production can induce similar, less or different environmental impacts, they produce little or no tailpipe emissions, and reduce dependence on petroleum, greenhouse gas emissions, and deaths from air pollution. Electric motors are significantly more efficient than internal combustion engines and thus, even accounting for typical power plant efficiencies and distribution losses, less energy is required to operate an electric vehicle. Manufacturing batteries for electric cars requires additional resources and energy, so they may have a larger environmental footprint in the production phase. Electric vehicles also generate different impacts in their operation and maintenance. Electric vehicles are typically heavier and could produce more tire and road dust air pollution, but their regenerative braking could reduce such particulate pollution from brakes. Electric vehicles are mechanically simpler, which reduces the use and disposal of engine oil.
The electric vehicle supply chain comprises the mining and refining of raw materials and the manufacturing processes that produce batteries and other components for electric vehicles.
Governments designate critical raw materials (CRM) as critical for their economies so there is no single list of such raw materials as the list varies from country to country as does the definition of critical. They include technology-critical elements, rare-earth elements and strategic materials.