This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Telerehabilitation (or e-rehabilitation [1] [2] [3] is the delivery of rehabilitation services over telecommunication networks and the internet. Telerehabilitation allows patients to interact with providers remotely and can be used both to assess patients and to deliver therapy. Fields of medicine that utilize telerehabilitation include: physical therapy, occupational therapy, speech-language pathology, audiology, and psychology. Therapy sessions can be individual or community-based. Types of therapy available include motor training exercises, speech therapy, virtual reality, robotic therapy, goal setting, and group exercise.
Commonly used modalities include webcams, videoconferencing, phone lines, videophones and webpages containing rich Internet applications. The visual nature of telerehabilitation technology limits the types of rehabilitation services that can be provided. Telerehabilitation is therefore often combined with other modalities such as in-person therapy.
Important areas of telerehabilitation research include the investigation of new and emerging rehabilitation modalities as well as comparisons between telerehabilitation and in-person therapy in terms of patient functional outcomes, cost, patient satisfaction, and compliance.
As of 2006, only a few health insurers in the United States will reimburse for telerehabilitation services. If the research shows that tele-assessments and tele-therapy are equivalent to clinical encounters, it is more likely that insurers and Medicare will extend coverage to certain telerehabilitation services as was the case during the pandemic (see also Occupational Therapy).
The clinical services provided by speech-language pathology readily lend themselves to telerehabilitation applications due to the emphasis on auditory and visual communicative interaction between the client and the clinician. As a result, the number of telerehabilitation applications in speech-language pathology tend to outnumber those in other allied health professions. To date, applications have been developed to assess and/or treat acquired adult speech and language disorders, stuttering, voice disorders, speech disorders in children, and swallowing dysfunction. The technology involved in these applications has ranged from the simple telephone (Plain Old Telephone System – POTS) to the use of dedicated Internet-based videoconferencing systems.
Early applications to assess and treat acquired adult speech and language disorders involved the use of the telephone to treat patients with aphasia and motor speech disorders (Vaughan, 1976, Wertz, et al., 1987), a computer controlled video laserdisc over the telephone and a closed-circuit television system to assess speech and language disorders (Wertz et al., 1987), and a satellite-based videoconferencing system to assess patients in rural areas (Duffy, Werven & Aronson, 1997). More recent applications have involved the use of sophisticated Internet-based videoconferencing systems with dedicated software which enable the assessment of language disorders, [4] [5] [6] [7] the treatment of language disorders, [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] and the assessment and treatment of motor speech disorders [19] [20] [21] following brain impairment and Parkinson's disease. [22] [23] [24] [25] [26] Speech and language therapy can also be effectively delivered via video for people with aphasia. [27] [28] Collectively, these studies have revealed positive treatment outcomes, while assessment and diagnoses have been found to be comparable to face-to-face evaluations.
The treatment of stuttering has been adapted to a telerehabilitation environment with notable success. Two Australian studies (Harrison, Wilson & Onslow, 1999; Wilson, Onslow & Lincoln, 2004) involving the distance delivery of the Lidcombe program to children who stutter have utilized the telephone in conjunction with offline video recordings to successfully treat several children. Overall, the parents and children responded positively to the program delivered at a distant. Using a high speed videoconferencing system link, Sicotte, Lehoux, Fortier-Blanc and Leblanc (2003) assessed and treated six children and adolescents with a positive reduction in the frequency of dysfluency that was maintained six months later. In addition, a videoconferencing platform has been used successfully to provide follow-up treatment to an adult who had previously received intensive therapy (Kully, 200).
Reports of telerehabilitation applications in paediatric speech and language disorders are sparse. A recent Australian pilot study has investigated the feasibility of an Internet-based assessment of speech disorder in six children (Waite, Cahill, Theodoros, Russell, Busuttin, in press). High levels of agreement between the online and face-to-face clinicians for single-word articulation, speech intelligibility, and oro-motor tasks were obtained suggesting that the Internet-based protocol had the potential to be a reliable method for assessing paediatric speech disorders.
Voice therapy across a variety of types of voice disorders has been shown to be effectively delivered via a telerehabilitation application. Mashima et al. (2003) using PC based videoconferencing and speech analysis software compared 23 patients treated online with 28 persons treated face-to-face. The authors reported positive post treatment results with no significant difference in measures between the traditional and videoconferencing group, suggesting that the majority of traditional voice therapy techniques can be applied to distance treatment.
Although obvious limitations exist, telerehabilitation applications for the assessment of swallowing function have also been used with success. Lalor, Brown and Cranfield (2000) were able to obtain an initial assessment of the nature and extent of swallowing dysfunction in an adult via a videoconferencing link although a more complete evaluation was restricted due to the inability to physically determine the degree of laryngeal movement. A more sophisticated telerehabilitation application for the assessment of swallowing was developed by Perlman and Witthawaskul (2002) who described the use of real-time videofluoroscopic examination via the Internet. This system enabled the capture and display of images in real-time with only a three to five second delay. There has been considerable research into the assessment and treatment of dysphagia via telerehabilitation, including cost analyses, leading to the establishment of sustainable telerehabilitation services. [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42]
There continues to be a need for ongoing research to develop and validate the use of telerehabilitation applications in speech-language pathology in a greater number and variety of adult and paediatric communication and swallowing disorders.
Occupational Therapy Practitioners (OTP), work with people across the lifespan in order to facilitate independence, establish or rehabilitate roles, habits and routines. Occupational Therapy can be administered through means of telehealth, and since telehealth is often being performed in the clients' own environment, carry-over and efficacy of interventions is often increased. There are many types of occupational therapy intervention that can be provided through telehealth. Many positive outcomes have been reported across multiple intervention areas including: motor learning/relearning, [43] ADL/IADL retraining (following CVA, TBI, Cancer, [44] joint replacement, etc), functional cognitive training, [45] home modification assessments, [46] vision rehabilitation, [47] pediatric therapies [48] and family training. It is safe to consider telehealth as an emerging practice area for OTPs with evidence of efficacy mounting from various areas of practice.
Following the COVID-19 Pandemic, Medicare and many private insurance companies swiftly adopted Telehealth as a reimbursable option for provision of occupational therapy services, although Telehealth has been used for many years prior especially in rural areas. As the public health emergency is due to expire, many advocates of telehealth are working towards establishing more permanent measures to protect telehealth as a reimbursed service. The American Occupational Therapy Association (AOTA) and World Federation of Occupational Therapists (WFOT) are both in support of Telehealth as a means to provide care. Most importantly, OTPs themselves are in support of making telehealth a permanent option for service delivery. [49] Telehealth is a promising adjunct to in-person treatment for persons receiving occupational therapy services.
Types of Physical rehabilitation therapies delivered through telerehabilitation include strengthening exercises, motor retraining, goal setting, virtual reality, robotic therapy, community-therapy.
Motor strengthening exercises are the most commonly implemented modality. In motor training exercises, a provider guides a patient through performing different motions and activities in order to regain strength and function. Motor training through telerehabilitation has consistently been shown to produce equivalent functional outcomes compared with in-person therapy. However, many patients require in-person therapy initially before transitioning to telerehabilitation.
Goal setting has been used in remote areas where cost and provider availability prohibit access to physical therapy. Patients work with a therapist to set personal goals and track their progress through sessions. Goal setting telerehabilitation has been shown to produce increased patient satisfaction and improvement in activities of daily living compared with a control group receiving no therapy.
Virtual reality therapy involves the use of a sensor to detect movement and a virtual environment displayed on either a screen or headset. Patients perform therapeutic movements that correspond to tasks within the virtual environment. This provides an immersive environment for the patient and allows computerized monitoring of patient progress. Studies that compared virtual reality with motor training exercises have shown equal or better outcomes with virtual reality.
Robotic therapy typically involves the use of hand and foot strengthening robots which provide resistance training and assist the patient with performing movements. Robotic devices can also obtain precise data on patient movements and usage statistics and transmit them to providers for evaluation. Robotic therapy has even been combined with virtual reality telerehabilitation to create a virtual environment which responds to robotic movements. Robotic telerehabilitation studies have shown patient improvement from baseline but equivalent functional outcomes compared with motor training exercises.
Community therapy is used to deliver education and therapy to patients remotely, either through group exercise sessions or through kiosks. Community therapy tends to have lower patient compliance than individualized therapy, but can deliver similar results if appropriately utilized. [1]
Telerehabilitation for chronic respiratory disease
The latest evidence suggests that primary pulmonary rehabilitation and maintenance rehabilitation delivered through telerehabilitation for people with chronic respiratory disease reaches outcomes similar to centre-based rehabilitation. [50] While there are no safety issues identified, the findings are based on evidence limited by a small number of studies. [50]
Telerehabilitation for cardiovascular disease
A systematic review of ten studies to measure the effectiveness of telerehabilitation as a means to reach "cardiac rehabilitation" has shown to be considered as an effective and appropriate measure to increase participation in underdeveloped areas. [51] The issue noted in the review was the technical drawbacks of broadband and limited internet connectivity, which limited the participation of willing participants of the study. [51] Addressing this technological gap could help showcase the potential impact of telerehabilitation on cardiac rehabilitation accessibility and participation as well as person-centered, health, and economic outcomes. [51]
In a 2018 systematic review of 15 studies it was found that there were no significant differences in given tests and measures between telerehabilitation and control groups when it came to post stroke care. [52] This was supported through tests such as Barthel Index , Berg Balance Scale , Fugl-Meyer Upper Extremity , and Stroke Impact Scale. [52] Furthermore, the study goes on to conclude that “Telerehabilitation can be a suitable alternative to usual rehabilitation care in post stroke care especially in remote or underserved areas. Larger studies are needed to evaluate the health-related quality of life and cost-effectiveness with the ongoing improvements in telerehabilitation networks.” [52]
In 1999, D.M. Angaran published "Telemedicine and Telepharmacy: Current Status and Future Implications" in the American Journal of Health-System Pharmacy. He provided a comprehensive history of telecommunications, the internet and telemedicine since the 1950s. The Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA) spearheaded the technology in the United States during the Vietnam War and the space program; both agencies continue to fund advances in telemedicine.
Three early adopters of telemedicine were state penitentiary systems, rural health care systems, and the radiology profession. Telemedicine makes business sense for the states because they do not have to pay for security escorts to have a prisoner receive care outside the prison. Rural telemedicine in the United States is heavily subsidized through federal agency grants for telecommunications operations, starting in the 1990s. Most of this funding comes through the Health Services Research Administration and the Department of Commerce. Some state universities have obtained state funding to operate tele-clinics in rural areas. However, few (if any) of these programs are known to financially break-even, mostly because of reimbursement challenges. For instance, the Medicare program for people over age 65 (the largest payer) has been very restrictive about paying for telehealth. This appears to be changing, as in response to the health access challenges during the COVID-19 pandemic, new opportunities for telehealth have emerged within many healthcare networks, including for rehabilitation services.
In contrast, the Veterans Administration is relatively active in using telemedicine for people with disabilities. There are several programs that provide annual physical exams or monitoring and consultation for veterans with spinal cord injuries. Similarly, some state Medicaid programs (for poor people and people with disabilities) have pilot programs using telecommunications to connect rural practitioners with subspecialty therapists. A few school districts in Oklahoma and Hawaii offer school-based rehabilitation therapy using therapy assistants who are directed by a remote therapist. The National Rehabilitation Hospital in Washington DC and Sister Kenny Rehabilitation Institute in Minneapolis provided assessment and evaluations to patients living in Guam and American Samoa. Cases included post-stroke, post-polio, autism, and wheel-chair fitting.
An argument can be made that "telerehabilitation" began in 1998 when NIDRR funded the first RERC on tele-rehabilitation. It was awarded to a consortium of biomedical engineering departments at the National Rehabilitation Hospital and The Catholic University of America, both located in Washington, DC; the Sister Kenny Rehabilitation Institute in Minnesota; and the East Carolina University in North Carolina. Some of this early research work, and its motivation, is reviewed in Winters (2002). [53] The State of Science Conference held in 2002 convened most of military and civilian clinicians, engineers, and government officials interested in using telecommunications as a modality for rehabilitation assessment and therapy; a summary is provided in Rosen, Winters & Lauderdale (2002). [54] The conference was attended by the incoming president of the American Telemedicine Association (ATA). This led to an invitation by ATA to the conference attendees to form a special interest group on telerehabilitation. NIDRR funded the second 5-year RERC on telerehabilitation in 2004, awarding it to the University of Pittsburgh. This RERC was renewed in 2010. The 21-chapter book Telerehabilitation (2013) [55] provides a good summary of the work of these RERCs and various colleagues, covering a wide variety of tele-applications in various rehabilitation fields plus policy issues.
In 2001, O. Bracy, a neuropsychologist, introduced the first web based, rich internet application, for the telerehabilitation presentation of cognitive rehabilitation therapy. This system first provides the subscriber clinician with an economical means of treating their own patients over the internet. Secondly, the system then provides, directly to the patient, the therapy prescription set up and controlled by the member clinician. All applications and response data are transported via the internet in real time. The patient can login to do their therapy from home, the library or anywhere they have access to an internet computer. In 2006, this system formed the basis of a new system designed as a cognitive skills enhancement program for school children. Individual children or whole classrooms can participate in this program over the internet.
In 2006, M.J. McCue and S.E. Palsbo published an article in the Journal of Telemedicine and Telecare that explored how telemedicine can become a profitable business for hospitals. They argue that telerehabilitation should be expanded so that people with disabilities and people in pain (perhaps after hip-replacement surgery or people with arthritis) can get the rehabilitative therapy they need. It is unethical to limit payments for telerehabilitation services only to patients in rural areas.
Research in telerehabilitation has evolved beyond its infancy, with many studies, but most are demonstration projects of smaller size. Rehabilitation researchers need to conduct many more controlled experiments and present the evidence to clinicians (and payers) that telerehabilitation is clinically effective. The discipline of speech-language pathology is ahead of occupational therapy and physical therapy in demonstrating equivalence over various types of telecommunications equipment. One area with dozens of research studies that often involve a telerehabilitation component relates to home telesupported neurorehabilitation therapy for stroke survivors (see sections on Physical Therapy, Stroke Survivors). These employ a suite of interactive goal-directed tasks, tunable by a therapist, that make use of simple robots or devices using game ports (e.g., Feng and Winters, 2007 [56] ).
In aphasia, a person may be unable to comprehend or unable to formulate language because of damage to specific brain regions. The major causes are stroke and head trauma; prevalence is hard to determine but aphasia due to stroke is estimated to be 0.1–0.4% in the Global North. Aphasia can also be the result of brain tumors, epilepsy, autoimmune neurological diseases, brain infections, or neurodegenerative diseases.
Expressive aphasia, also known as Broca's aphasia, is a type of aphasia characterized by partial loss of the ability to produce language, although comprehension generally remains intact. A person with expressive aphasia will exhibit effortful speech. Speech generally includes important content words but leaves out function words that have more grammatical significance than physical meaning, such as prepositions and articles. This is known as "telegraphic speech". The person's intended message may still be understood, but their sentence will not be grammatically correct. In very severe forms of expressive aphasia, a person may only speak using single word utterances. Typically, comprehension is mildly to moderately impaired in expressive aphasia due to difficulty understanding complex grammar.
Physical therapy (PT), also known as physiotherapy, is a healthcare profession, as well as the care provided by physical therapists who promote, maintain, or restore health through patient education, physical intervention, disease prevention, and health promotion. Physical therapist is the term used for such professionals in the United States, and physiotherapist is the term used in many other countries.
Wernicke's aphasia, also known as receptive aphasia, sensory aphasia, fluent aphasia, or posterior aphasia, is a type of aphasia in which individuals have difficulty understanding written and spoken language. Patients with Wernicke's aphasia demonstrate fluent speech, which is characterized by typical speech rate, intact syntactic abilities and effortless speech output. Writing often reflects speech in that it tends to lack content or meaning. In most cases, motor deficits do not occur in individuals with Wernicke's aphasia. Therefore, they may produce a large amount of speech without much meaning. Individuals with Wernicke's aphasia are typically unaware of their errors in speech and do not realize their speech may lack meaning. They typically remain unaware of even their most profound language deficits.
A communication disorder is any disorder that affects an individual's ability to comprehend, detect, or apply language and speech to engage in dialogue effectively with others. This also encompasses deficiencies in verbal and non-verbal communication styles. The delays and disorders can range from simple sound substitution to the inability to understand or use one's native language. This article covers subjects such as diagnosis, the DSM-IV, the DSM-V, and examples like sensory impairments, aphasia, learning disabilities, and speech disorders.
Apraxia is a motor disorder caused by damage to the brain, which causes difficulty with motor planning to perform tasks or movements. The nature of the damage determines the disorder's severity, and the absence of sensory loss or paralysis helps to explain the level of difficulty. Children may be born with apraxia; its cause is unknown, and symptoms are usually noticed in the early stages of development. Apraxia occurring later in life, known as acquired apraxia, is typically caused by traumatic brain injury, stroke, dementia, Alzheimer's disease, brain tumor, or other neurodegenerative disorders. The multiple types of apraxia are categorized by the specific ability and/or body part affected.
Anomic aphasia is a mild, fluent type of aphasia where individuals have word retrieval failures and cannot express the words they want to say. By contrast, anomia is a deficit of expressive language, and a symptom of all forms of aphasia, but patients whose primary deficit is word retrieval are diagnosed with anomic aphasia. Individuals with aphasia who display anomia can often describe an object in detail and maybe even use hand gestures to demonstrate how the object is used, but cannot find the appropriate word to name the object. Patients with anomic aphasia have relatively preserved speech fluency, repetition, comprehension, and grammatical speech.
Global aphasia is a severe form of nonfluent aphasia, caused by damage to the left side of the brain, that affects receptive and expressive language skills as well as auditory and visual comprehension. Acquired impairments of communicative abilities are present across all language modalities, impacting language production, comprehension, and repetition. Patients with global aphasia may be able to verbalize a few short utterances and use non-word neologisms, but their overall production ability is limited. Their ability to repeat words, utterances, or phrases is also affected. Due to the preservation of the right hemisphere, an individual with global aphasia may still be able to express themselves through facial expressions, gestures, and intonation. This type of aphasia often results from a large lesion of the left perisylvian cortex. The lesion is caused by an occlusion of the left middle cerebral artery and is associated with damage to Broca's area, Wernicke's area, and insular regions which are associated with aspects of language.
Telehealth is the distribution of health-related services and information via electronic information and telecommunication technologies. It allows long-distance patient and clinician contact, care, advice, reminders, education, intervention, monitoring, and remote admissions. Telemedicine is sometimes used as a synonym, or is used in a more limited sense to describe remote clinical services, such as diagnosis and monitoring. When rural settings, lack of transport, a lack of mobility, conditions due to outbreaks, epidemics or pandemics, decreased funding, or a lack of staff restrict access to care, telehealth may bridge the gap as well as provide distance-learning; meetings, supervision, and presentations between practitioners; online information and health data management and healthcare system integration. Telehealth could include two clinicians discussing a case over video conference; a robotic surgery occurring through remote access; physical therapy done via digital monitoring instruments, live feed and application combinations; tests being forwarded between facilities for interpretation by a higher specialist; home monitoring through continuous sending of patient health data; client to practitioner online conference; or even videophone interpretation during a consult.
eHealth describes healthcare services which are supported by digital processes, communication or technology such as electronic prescribing, Telehealth, or Electronic Health Records (EHRs). The use of electronic processes in healthcare dated back to at least the 1990s. Usage of the term varies as it covers not just "Internet medicine" as it was conceived during that time, but also "virtually everything related to computers and medicine". A study in 2005 found 51 unique definitions. Some argue that it is interchangeable with health informatics with a broad definition covering electronic/digital processes in health while others use it in the narrower sense of healthcare practice using the Internet. It can also include health applications and links on mobile phones, referred to as mHealth or m-Health. Key components of eHealth include electronic health records (EHRs), telemedicine, health information exchange, mobile health applications, wearable devices, and online health information. These technologies enable healthcare providers, patients, and other stakeholders to access, manage, and exchange health information more effectively, leading to improved communication, decision-making, and overall healthcare outcomes.
Telenursing refers to the use of information technology in the provision of nursing services whenever physical distance exists between patient and nurse, or between any number of nurses. As a field, it is part of telemedicine, and has many points of contacts with other medical and non-medical applications, such as telediagnosis, teleconsultation, and telemonitoring. The field, however, is still being developed as the information on telenursing isn't comprehensive enough.
Primary progressive aphasia (PPA) is a type of neurological syndrome in which language capabilities slowly and progressively become impaired. As with other types of aphasia, the symptoms that accompany PPA depend on what parts of the left hemisphere are significantly damaged. However, unlike most other aphasias, PPA results from continuous deterioration in brain tissue, which leads to early symptoms being far less detrimental than later symptoms.
Ellen R. Cohn is an associate dean and associate professor at University of Pittsburgh School of Health and Rehabilitation Sciences, with a secondary faculty appointment at University of Pittsburgh School of Pharmacy. She is a faculty member of the McGowan Institute of Regenerative Medicine.
Telepsychiatry or telemental health refers to the use of telecommunications technology to deliver psychiatric care remotely for people with mental health conditions. It is a branch of telemedicine.
Virtual reality in telerehabilitation is a method used first in the training of musculoskeletal patients using asynchronous patient data uploading, and an internet video link. Subsequently, therapists using virtual reality-based telerehabilitation prescribe exercise routines via the web which are then accessed and executed by patients through a web browser. Therapists then monitor the patient's progress via the web and modify the therapy asynchronously without real-time interaction or training.
Speech–language pathology (also known as speech and language pathology or logopedics) is a healthcare and academic discipline concerning the evaluation, treatment, and prevention of communication disorders, including expressive and mixed receptive-expressive language disorders, voice disorders, speech sound disorders, speech disfluency, pragmatic language impairments, and social communication difficulties, as well as swallowing disorders across the lifespan. It is an allied health profession regulated by professional bodies including the American Speech-Language-Hearing Association (ASHA) and Speech Pathology Australia. The field of speech-language pathology is practiced by a clinician known as a speech-language pathologist (SLP) or a speech and language therapist (SLT). SLPs also play an important role in the screening, diagnosis, and treatment of autism spectrum disorder (ASD), often in collaboration with pediatricians and psychologists.
Neurorehabilitation is a complex medical process which aims to aid recovery from a nervous system injury, and to minimize and/or compensate for any functional alterations resulting from it.
A doctor's visit, also known as a physician office visit or a consultation, or a ward round in an inpatient care context, is a meeting between a patient with a physician to get health advice or treatment plan for a symptom or condition, most often at a professional health facility such as a doctor's office, clinic or hospital. According to a survey in the United States, a physician typically sees between 50 and 100 patients per week, but it may vary with medical specialty, but differs only little by community size such as metropolitan versus rural areas.
Online speech therapy or telepractice is the use of technology to provide speech therapy via high speed internet, webcam, headset with microphone or any other form of communication. Online therapy is a clinical arrangement where the patient and a speech-language certified pathologist communicate and interact face-to-face over the Internet. The session involves a suite of therapeutic exercises including listening, speaking, reading and writing. The recorded videos are assessed by the pathologist to generate an activity report for evaluating progress and usage.
Telehomecare (THC) is a subfield within telehealth. It involves the delivery of healthcare services to patients at home through the use of telecommunications technologies, which enable the interaction of voice, video, and health-related data. The management of care is done from an external site by a healthcare professional.