Established | 2007 |
---|---|
Location | Bletchley Park, UK SatNav MK3 6DS |
Coordinates | 51°59′55″N0°44′37″W / 51.9985°N 0.7435°W |
Accreditation | Nationally-styled museum by Arts Council England |
Public transit access | Bletchley Train Station |
Website | tnmoc.org |
The National Museum of Computing is a UK-based museum that is dedicated to collecting and restoring historic computer systems, and is home to the world's largest collection of working historic computers. [1] The museum is located on Bletchley Park in Milton Keynes, Buckinghamshire. [2] It opened in 2007 [3] in Block H – the first purpose-built computer centre in the world, having housed six of the ten Colossus computers that were in use at the end of World War II.
As well as first generation computers including the original Harwell Dekatron computer – the world's oldest working digital computer [4] – Mainframe computers of the 1950s, 60s and 70s, the Museum houses an extensive collection of personal computers and a classroom full of BBC Micros. It is available for corporate, group, school, and individual visitors.
Although located on the Bletchley Park 'campus', The National Museum of Computing is an entirely separate registered charity [5] with its own admission fee. It receives no public funding and relies on ticket sales and the generosity of donors and supporters. The museum has its own cafe and gift shop. In 2024 it was awarded full accreditation as a Nationally-styled museum by Arts Council England.
The Bletchley Park estate was threatened with demolition and redevelopment in the late 1980s and early 1990s. It was saved in 1993 thanks to the efforts of the Bletchley Park Trust (BPT), which had been established in the previous year. [6] One leading member – and secretary to the Trust – was a scientist with electronics and computer engineering skills named Tony Sale (1931–2011). He had worked for MI5 and later at the Science Museum alongside Doron Swade on a series of projects to restore some of the Science Museum's computer holdings to working order. [7] Sale became the first curator of the Bletchley Park Museum, which in its early days was supplemented by more than a score of collections varying from WWII memorabilia to model railways. One of these centred around the history of computing and contained many historic computers, several of which were maintained in working order by enthusiastic volunteers, many of whom were members of the Computer Conservation Society. [8]
In 1993, Tony Sale and a group of volunteers started to rebuild a Colossus (a 'rebuild' as it contains parts from an original) in Block H. By June 1996 they had a prototype machine working, which was formally switched on by the Duke of Kent in the presence of Tommy Flowers who built the wartime Colossi. [9] When in 2004 Block H came under threat of demolition, Sale and colleagues were able to protect it by obtaining Grade II listed building status for it. [10] This led to the detachment of the computing collection from the Bletchley Park Trust museum, and the establishment in 2005 of the Codes and Ciphers Heritage Trust, which became the National Museum of Computing in 2007. Between 1994 and 2007 a group of volunteers led by John Harper built a working replica of a Turing-Welchman Bombe (used to help decipher Enigma–coded messages) in the BPT museum. This was relocated to Block H in 2018.
The exhibits on display in the museum represent only a fraction of the collection, but are chosen to tell the story of computing developments in Britain. There are a number of galleries which can be visited in a broadly chronological sequence, starting with the working replicas of WWII machines that were developed and used by Bletchley Park codebreakers.
This gallery tells the story of Cryptanalysis of the Enigma. Enigma machines were used by the Germans before and during WWII for sending secret messages. Alan Turing further developed, and Gordon Welchman enhanced, an idea implemented by Polish codebreakers, of a machine to assist in decrypting Enigma messages. [11] This gallery houses a fully working replica of a Bombe machine, a working replica Enigma and various related artefacts.
The replica Bombe was built by a team led by John Harper following the release in 1995 to the Bletchley Park Trust of some 2,000 BTM documents and drawings relating to the Bombes that they had built during the war. [12] The replica is owned and managed by the Turing-Welchman Bombe Rebuild Trust, which provides and trains the volunteers who run and demonstrate the machine to visitors on a regular basis. [13]
Separate from the Enigma story is the less well-known endeavour of the diagnosing and deciphering of messages produced by the more secure 12-rotor Lorenz SZ teleprinter cipher attachments, which is told in these two galleries. The Tunny galley exhibits one of the very few Lorenz SZ42 machines still in existence — something that nobody in the Allied side saw until after Nazi Field Marshal Albert Kesselring surrendered in May 1945, shortly before VE-day.
'Tunny' was the name given to the messages, to the unseen cipher machine and to the British-built emulator of it. The gallery contains a reproduction of part of the original Lorenz listening station at Knockholt in Kent, with its multiple RCA AR-88 radio receivers, [14] pen recorders (undulators) and the sort of paper tape and teleprinter equipment that was used to record the messages and transmit them to Bletchley Park. Also on display is a working replica of a British Tunny machine that exactly emulated the Lorenz machine and a working replica of the Heath Robinson machine, the forerunner of Colossus.
The Colossus gallery houses the fully working rebuild of a Colossus Mark 2. During his work to save Bletchley Park, Tony Sale recognised the pioneering nature of the ten Colossus machines that had been designed and built during WWII to assist in breaking messages enciphered by the Lorenz machines. [15] He and his team spent 14 years from 1993 in building this machine. [16]
As its name implies, Colossus is a large machine which weighed five tonnes. It was designed and built for the single purpose of assisting with deciphering messages enciphered with the 'Tunny' machines. At the heart of the machine is a set of five counters that, for each transit of the looped paper tape containing the message, count the number of times that defined Boolean expressions deliver a specified value. These Boolean expressions were programmed by operating a panel of some 190 switches. The looped message tape would be run continuously, being read at 5000 characters per second. A cryptanalyst would specify different Boolean expressions for evaluation according to the results produced. With its 2,420 valves (vacuum tubes) and its programmability, the machine on display is a recreation of the world’s first large-scale, electronic programmable digital computer, albeit a special purpose, not a general purpose machine. [17]
There are a number of related artefacts in this gallery.
This gallery continues the story of valve or tube-based computers and exhibits three large machines and many other related items. The three unique large machines are:
The HEC and EDSAC had a huge bearing on the development of computing in the UK. In particular, EDSAC led directly to LEO, the world’s first computer to run a business. The WITCH had less influence on the development of computers but in the 1960s and 1970s, and again now, is a great educational tool.
Among the smaller items are several from the productive partnership between the Victoria University of Manchester and the electrical engineering company Ferranti. These include:
This gallery contains many machines of the 1960s, -70s and -80s and one or two from the 1990s. Many machines are in working order and include:
This small gallery is used for a variety short-term exhibitions. These have included:
This gallery exhibits a variety of items including: [39]
This gallery exhibits many of the familiar home and business computers of the 1980s and 1990s. [40] Visitors can play some of the popular home computer games of the time as well. On show are, amongst others:
Various substantial exhibitions reside here for periods of months or years.
This gallery covers a wide range of systems that were used in some way to simulate a reality. These include:
These are two adjacent and interconnected education areas. The Innovation Hub was equipped by Fujitsu as part of its Education Ambassador Programme. It contains an array of Fujitsu technology including tablets, hybrid devices, laptops and desktop PCs.
Next door is the BBC Classroom which contains a large set of working vintage BBC Micro computers. This machine was the winning design for the BBC’s Computer Literacy Project [42] and was first demonstrated by Acorn Computers in 1981. The resulting series of computers became a mainstay of British schools in the 1980s. More than 1.5 million were sold, and their rugged design ensured that they survived the school environment. This classroom is used for workshops, activities and talks for a wide range of groups including school and academic groups, families and special interest groups.
This gallery was sponsored by the UK's National Physical Laboratory. [43] It tells the story of how, in 1965, Donald Davies, a member of the team there responsible for building Alan Turing's Automatic Computing Engine (ACE) thought of the idea of a network of interconnected data terminals to access time-shared computers. [44] Rather than a large number of lines, each carrying only a small amount of data, his conception was for the data to be broken up into short messages in a fixed format, which he named ′packets′, with computer 'nodes' running software to switch the packets at high-speeds between physical circuits. [45] This concept of packet switching was first presented in public in the US at the inaugural ACM symposium in Gatlinburg, 1967, and in the UK at the IFIP Congress, 1968, in Edinburgh. [46] Davies' design of data communication for computer networks was adopted by ARPA, a research agency of the US Department of Defense and incorporated into its design of ARPANET, the forerunner of the Internet. [47] ARPANET's first link was established between the University of California and Stanford Research Institute in November 1969, by which time the NPL's packet-switched network was already operational. [48] [49]
The museum entirely depends on voluntary and corporate donations and admission charges. Fund-raising continues and donors have included Bletchley Park Capital Partners, Fujitsu, Google UK, CreateOnline, Ceravision, Insight software, [50] PGP Corporation, IBM, NPL, HP Labs, British Computer Society (BCS), Black Marble, and the School of Computer Science at the University of Hertfordshire.
The museum conducted a crowdfunding campaign in March 2018 to raise funds to build a new gallery for the Bombe. [51] The campaign raised over £43,000 via crowd-funding and an additional £20,000 via direct donations.
The museum secured £500,000 from the Post Office Remembrance Fellowship, conditional on the raising a further £150,000 in matched funding. This was for the restoration of the 80-year-old roof over the Tunny and Colossus galleries and the refurbishment of several museum spaces. In January 2023 they launched a crowdfunding appeal for the matched funding and raised sufficient for the work to start early in 2024. [52]
The Museum is normally open to the public 4 days a week: Tuesdays, Thursdays, Saturdays, and Sundays, from 10:30am to 4:30pm during the winter period, extending to 5pm during the summer months. Demonstrations and talks in the Bombe, Tunny, and Colossus galleries usually occur on the hour, with slight changes depending on the number of visitors. Guided tours operate at 2pm on Tuesdays, Thursdays and Sundays. Booking for tours is recommended as there are limited places.
See the museum website for admission charges, with concessions available for students, over 60s, and children (under 5s free). Annual tickets, offering unlimited return visits for all open days, are also available.
Alan Mathison Turing was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. He was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. Turing is widely considered to be the father of theoretical computer science.
Bletchley Park is an English country house and estate in Bletchley, Milton Keynes (Buckinghamshire), that became the principal centre of Allied code-breaking during the Second World War. The mansion was constructed during the years following 1883 for the financier and politician Herbert Leon in the Victorian Gothic, Tudor and Dutch Baroque styles, on the site of older buildings of the same name.
Colossus was a set of computers developed by British codebreakers in the years 1943–1945 to help in the cryptanalysis of the Lorenz cipher. Colossus used thermionic valves to perform Boolean and counting operations. Colossus is thus regarded as the world's first programmable, electronic, digital computer, although it was programmed by switches and plugs and not by a stored program.
The history of computing hardware spans the developments from early devices used for simple calculations to today's complex computers, encompassing advancements in both analog and digital technology.
The Lorenz SZ40, SZ42a and SZ42b were German rotor stream cipher machines used by the German Army during World War II. They were developed by C. Lorenz AG in Berlin. The model name SZ was derived from Schlüssel-Zusatz, meaning cipher attachment. The instruments implemented a Vernam stream cipher.
The bombe was an electro-mechanical device used by British cryptologists to help decipher German Enigma-machine-encrypted secret messages during World War II. The US Navy and US Army later produced their own machines to the same functional specification, albeit engineered differently both from each other and from Polish and British bombes.
Thomas Harold Flowers MBE was an English engineer with the British General Post Office. During World War II, Flowers designed and built Colossus, the world's first programmable electronic computer, to help decipher encrypted German messages.
Cryptanalysis of the Enigma ciphering system enabled the western Allies in World War II to read substantial amounts of Morse-coded radio communications of the Axis powers that had been enciphered using Enigma machines. This yielded military intelligence which, along with that from other decrypted Axis radio and teleprinter transmissions, was given the codename Ultra.
Cryptography was used extensively during World War II because of the importance of radio communication and the ease of radio interception. The nations involved fielded a plethora of code and cipher systems, many of the latter using rotor machines. As a result, the theoretical and practical aspects of cryptanalysis, or codebreaking, were much advanced.
William Gordon Welchman OBE was a British mathematician. During World War II, he worked at Britain's secret decryption centre at Bletchley Park, where he was one of the most important contributors. In 1948, after the war, he moved to the US, and later worked on the design of military communications systems.
The British Tabulating Machine Company (BTM) was a firm which manufactured and sold Hollerith unit record equipment and other data-processing equipment. During World War II, BTM constructed some 200 "bombes", machines used at Bletchley Park to break the German Enigma machine ciphers.
The Computer Conservation Society (CCS) is a British organisation, founded in 1989. It is under the joint umbrella of the British Computer Society (BCS), the London Science Museum and the Manchester Museum of Science and Industry.
John William Jamieson Herivel was a British science historian and World War II codebreaker at Bletchley Park.
Heath Robinson was a machine used by British codebreakers at the Government Code and Cypher School (GC&CS) at Bletchley Park during World War II in cryptanalysis of the Lorenz cipher. This achieved the decryption of messages in the German teleprinter cipher produced by the Lorenz SZ40/42 in-line cipher machine. Both the cipher and the machines were called "Tunny" by the codebreakers, who named different German teleprinter ciphers after fish. It was mainly an electro-mechanical machine, containing no more than a couple of dozen valves, and was the predecessor to the electronic Colossus computer. It was dubbed "Heath Robinson" by the Wrens who operated it, after cartoonist William Heath Robinson, who drew immensely complicated mechanical devices for simple tasks, similar to Rube Goldberg in the U.S.
Charles Eryl Wynn-Williams, was a Welsh physicist, noted for his research on electronic instrumentation for use in nuclear physics. His work on the scale-of-two counter contributed to the development of the modern computer.
Anthony Edgar "Tony" Sale, FBCS was a British electronic engineer, computer programmer, computer hardware engineer, and historian of computing. He led the construction of a fully functional Mark 2 Colossus computer between 1993 and 2008. The rebuild is exhibited at The National Museum of Computing at Bletchley Park in England.
John Harper is a retired computer engineer. He led a Computer Conservation Society/Bletchley Park team that rebuilt a working World War II electromechanical Bombe decryption device.
Harry William Fensom was an English electronic engineer with the GPO. During World War II he worked with Tommy Flowers at Bletchley Park on Colossus, the world's first electronic computer, that helped to decode encrypted German messages using the Lorenz cipher. After the war, he designed ERNIE, a machine based on Colossus engineering that was used to generate bond numbers for the Premium Bond draw.
Gilbert Osborne Hayward was a World War II cryptographer and inventor of the first electronic seal security device.
all users of the network will provide themselves with some kind of error control ... Computer developments in the distant future might result in one type of network being able to carry speech and digital messages efficiently.
It was a seminal meeting as the NPL proposal illustrated how the communications for such a resource-sharing computer network could be realized.
Davies's invention of packet switching and design of computer communication networks ... were a cornerstone of the development which led to the Internet
The first packet-switching network was implemented at the National Physical Laboratories in the United Kingdom. It was quickly followed by the ARPANET in 1969.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)