Topographic Rossby waves

Last updated
Animation of propagating Rossby wave. Rossby waves.gif
Animation of propagating Rossby wave.

Topographic Rossby waves are geophysical waves that form due to bottom irregularities. For ocean dynamics, the bottom irregularities are on the ocean floor such as the mid-ocean ridge. For atmospheric dynamics, the other primary branch of geophysical fluid dynamics, the bottom irregularities are found on land, for example in the form of mountains. Topographic Rossby waves are one of two types of geophysical waves named after the meteorologist Carl-Gustaf Rossby. The other type of Rossby waves are called planetary Rossby waves and have a different physical origin. Planetary Rossby waves form due to the changing Coriolis parameter over the earth. Rossby waves are quasi-geostrophic, dispersive waves. This means that not only the Coriolis force and the pressure-gradient force influence the flow, as in geostrophic flow, but also inertia.

Contents

Physical derivation

This section describes the mathematically simplest situation where topographic Rossby waves form: a uniform bottom slope.

Shallow water equations

A coordinate system is defined with x in eastward direction, y in northward direction and z as the distance from the earth's surface. The coordinates are measured from a certain reference coordinate on the earth's surface with a reference latitude and a mean reference layer thickness . The derivation begins with the shallow water equations:

where

is the velocity in the x direction, or zonal velocity
is the velocity in the y direction, or meridional velocity
is the local and instantaneous fluid layer thickness
is the height deviation of the fluid from its mean height
is the acceleration due to gravity
is the Coriolis parameter at the reference coordinate with , where is the angular frequency of the Earth and is the reference latitude

In the equation above, friction (viscous drag and kinematic viscosity) is neglected. Furthermore, a constant Coriolis parameter is assumed ("f-plane approximation"). The first and the second equation of the shallow water equations are respectively called the zonal and meridional momentum equations, and the third equation is the continuity equation. The shallow water equations assume a homogeneous and barotropic fluid.

Linearization

For simplicity, the system is limited by means of a weak and uniform bottom slope that is aligned with the y-axis, which in turn enables a better comparison to the results with planetary Rossby waves. The mean layer thickness for an undisturbed fluid is then defined as

A layer of homogeneous fluid over a sloping bottom and the attending notation. Scheme rossby waves.pdf
A layer of homogeneous fluid over a sloping bottom and the attending notation.

where is the slope of bottom, the topographic parameter and the horizontal length scale of the motion. The restriction on the topographic parameter guarantees that there is a weak bottom irregularity. The local and instantaneous fluid thickness can be written as

Utilizing this expression in the continuity equation of the shallow water equations yields

The set of equations is made linear to obtain a set of equations that is easier to solve analytically. This is done by assuming a Rossby number Ro (= advection / Coriolis force), which is much smaller than the temporal Rossby number RoT (= inertia / Coriolis force). Furthermore, the length scale of is assumed to be much smaller than the thickness of the fluid . Finally, the condition on the topographic parameter is used and the following set of linear equations is obtained:

Quasi-geostrophic approximation

Next, the quasi-geostrophic approximation Ro, RoT 1 is made, such that

where and are the geostrophic flow components and and are the ageostrophic flow components with and . Substituting these expressions for and in the previously acquired set of equations, yields:

Neglecting terms where small component terms ( and ) are multiplied, the expressions obtained are:

Substituting the components of the ageostrophic velocity in the continuity equation the following result is obtained:

in which R, the Rossby radius of deformation, is defined as

Dispersion relation of topographic Rossby waves. Dispersion relation topographic Rossby waves higher quality.jpg
Dispersion relation of topographic Rossby waves.

Dispersion relation

Taking for a plane monochromatic wave of the form

with the amplitude, and the wavenumber in x- and y- direction respectively, the angular frequency of the wave, and a phase factor, the following dispersion relation for topographic Rossby waves is obtained:

If there is no bottom slope (), the expression above yields no waves, but a steady and geostrophic flow. This is the reason why these waves are called topographic Rossby waves.

The maximum frequency of the topographic Rossby waves is

which is attained for and . If the forcing creates waves with frequencies above this threshold, no Rossby waves are generated. This situation rarely happens, unless is very small. In all other cases exceeds and the theory breaks down. The reason for this is that the assumed conditions: and RoT are no longer valid. The shallow water equations used as a starting point also allow for other types of waves such as Kelvin waves and inertia-gravity waves (Poincaré waves). However, these do not appear in the obtained results because of the quasi-geostrophic assumption which is used to obtain this result. In wave dynamics this is called filtering.

Phase speed

The phase speed of the waves along the isobaths (lines of equal depth, here the x-direction) is

The phase speed of topographic Rossby waves in x-direction on the northern hemisphere. Travel direction topographic Rossby waves.jpg
The phase speed of topographic Rossby waves in x-direction on the northern hemisphere.

which means that on the northern hemisphere the waves propagate with the shallow side at their right and on the southern hemisphere with the shallow side at their left. The equation of shows that the phase speed varies with wavenumber so the waves are dispersive. The maximum of is

which is the speed of very long waves (). The phase speed in the y-direction is

which means that can have any sign. The phase speed is given by

from which it can be seen that as . This implies that the maximum of is the maximum of . [1]

Analogy between topographic and planetary Rossby waves

Planetary and topographic Rossby waves are the same in the sense that, if the term is exchanged for in the expressions above, where is the beta-parameter or Rossby parameter, the expression of planetary Rossby waves is obtained. The reason for this similarity is that for the nonlinear shallow water equations for a frictionless, homogeneous flow the potential vorticity q is conserved:

with being the relative vorticity, which is twice the rotation speed of fluid elements about the z-axis, and is mathematically defined as

with an anticlockwise rotation about the z-axis. On a beta-plane and for a linearly sloping bottom in the meridional direction, the potential vorticity becomes

.

In the derivations above it was assumed that

so

where a Taylor expansion was used on the denominator and the dots indicate higher order terms. Only keeping the largest terms and neglecting the rest, the following result is obtained:

Consequently, the analogy that appears in potential vorticity is that and play the same role in the potential vorticity equation. Rewriting these terms a bit differently, this boils down to the earlier seen and , which demonstrates the similarity between planetary and topographic Rossby waves. The equation for potential vorticity shows that planetary and topographic Rossby waves exist because of a background gradient in potential vorticity.

The physical mechanisms that propel topographic waves. Displaced fluid parcels react to their new location by developing either clockwise or counterclockwise vorticity. Intermediate parcels are entrained by neighboring vortices, and the wave progresses forward. Resulted Rossby waves.pdf
The physical mechanisms that propel topographic waves. Displaced fluid parcels react to their new location by developing either clockwise or counterclockwise vorticity. Intermediate parcels are entrained by neighboring vortices, and the wave progresses forward.

The analogy between planetary and topographic Rossby waves is exploited in laboratory experiments that study geophysical flows to include the beta effect which is the change of the Coriolis parameter over the earth. The water vessels used in those experiments are far too small for the Coriolis parameter to vary significantly. The beta effect can be mimicked to a certain degree in these experiments by using a tank with a sloping bottom. The substitution of the beta effect by a sloping bottom is only valid for a gentle slope, slow fluid motions and in the absence of stratification. [1]

Conceptual explanation

As shown in the last section, Rossby waves are formed because potential vorticity must be conserved. When the surface has a slope, the thickness of the fluid layer is not constant. The conservation of the potential vorticity forces the relative vorticity or the Coriolis parameter to change. Since the Coriolis parameter is constant at a given latitude, the relative vorticity must change. In the figure a fluid moves to a shallower environment, where is smaller, causing the fluid to form a crest. When the height is smaller, the relative vorticity must also be smaller. In the figure, this becomes a negative relative vorticity (on the northern hemisphere a clockwise spin) shown with the rounded arrows. On the southern hemisphere this is an anticlockwise spin, because the Coriolis parameter is negative on the southern hemisphere. If a fluid moves to a deeper environment, the opposite is true. The fluid parcel on the original depth is sandwiched between two fluid parcels with one of them having a positive relative vorticity and the other one a negative relative vorticity. This causes a movement of the fluid parcel to the left in the figure. In general, the displacement causes a wave pattern that propagates with the shallower side to the right on the northern hemisphere and to the left on the southern hemisphere. [1]

Measurements of topographic Rossby waves in the Northern Atlantic. Northward (thicker lines) and eastward (thinner lines) velocity measurements in cm/s at 100, 500, 1000 and 2000 meters depth. Metingen.pdf
Measurements of topographic Rossby waves in the Northern Atlantic. Northward (thicker lines) and eastward (thinner lines) velocity measurements in cm/s at 100, 500, 1000 and 2000 meters depth.

Measurements of topographic Rossby waves on earth

From 1 January 1965 till 1 January 1968, The Buoy Project at the Woods Hole Oceanographic Institution dropped buoys on the western side of the Northern Atlantic to measure the velocities. The data has several gaps because some of the buoys went missing. Still they managed to measure topographic Rossby waves at 500 meters depth. [2] Several other research projects have confirmed that there are indeed topographic Rossby waves in the Northern Atlantic. [3] [4] [5]

In 1988, barotropic planetary Rossby waves were found in the Northwest Pacific basin. [6] Further research done in 2017 concluded that the Rossby waves are no planetary Rossby waves, but topographic Rossby waves. [7]

In 2021, research in the South China Sea confirmed that topographic Rossby waves exist. [8] [9]

In 2016, research in the East Mediterranean showed that topographic Rossby Waves are generated south of Crete due to lateral shifts of a mesoscale circulation structure over the sloping bottom at 4000 m (https://doi.org/10.1016/j.dsr2.2019.07.008).

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In special relativity, electromagnetism and wave theory, the d'Alembert operator, also called the d'Alembertian, wave operator, box operator or sometimes quabla operator is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of Earth and other planets, owing to the rotation of Earth or of the planet involved. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.

A Kelvin wave is a wave in the ocean or atmosphere that balances the Earth's Coriolis force against a topographic boundary such as a coastline, or a waveguide such as the equator. A feature of a Kelvin wave is that it is non-dispersive, i.e., the phase speed of the wave crests is equal to the group speed of the wave energy for all frequencies. This means that it retains its shape as it moves in the alongshore direction over time.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Post-Newtonian expansion</span> Method of approximation in general relativity

In general relativity, post-Newtonian expansions are used for finding an approximate solution of Einstein field equations for the metric tensor. The approximations are expanded in small parameters that express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields sometimes it is preferable to solve the complete equations numerically. This method is a common mark of effective field theories. In the limit, when the small parameters are equal to 0, the post-Newtonian expansion reduces to Newton's law of gravity.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Shallow water equations</span> Set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary Layer

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers and Nicholas Rott. The Burgers vortex describes a stationary, self-similar flow. An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis. At the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the two effects balance.

<span class="mw-page-title-main">Trochoidal wave</span> Exact solution of the Euler equations for periodic surface gravity waves

In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.

In fluid dynamics, stagnation point flow represents the flow of a fluid in the immediate neighborhood of a stagnation point with which the stagnation point is identified for a potential flow or inviscid flow. The flow specifically considers a class of stagnation points known as saddle points where the incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.

Tides in marginal seas are tides affected by their location in semi-enclosed areas along the margins of continents and differ from tides in the open oceans. Tides are water level variations caused by the gravitational interaction between the moon, the sun and the earth. The resulting tidal force is a secondary effect of gravity: it is the difference between the actual gravitational force and the centrifugal force. While the centrifugal force is constant across the earth, the gravitational force is dependent on the distance between the two bodies and is therefore not constant across the earth. The tidal force is thus the difference between these two forces on each location on the earth.

Nonlinear tides are generated by hydrodynamic distortions of tides. A tidal wave is said to be nonlinear when its shape deviates from a pure sinusoidal wave. In mathematical terms, the wave owes its nonlinearity due to the nonlinear advection and frictional terms in the governing equations. These become more important in shallow-water regions such as in estuaries. Nonlinear tides are studied in the fields of coastal morphodynamics, coastal engineering and physical oceanography. The nonlinearity of tides has important implications for the transport of sediment.

References

  1. 1 2 3 Cushman-Roisin, Benoit; Beckers, Jean-Marie (2011), Introduction, International Geophysics, vol. 101, Elsevier, pp. 3–39, doi:10.1016/b978-0-12-088759-0.00001-8, ISBN   9780120887590 , retrieved 2022-03-17
  2. 1 2 Thompson, Rory (January 1971). "Topographic Rossby waves at a site north of the Gulf Stream". Deep Sea Research and Oceanographic Abstracts. 18 (1): 1–19. Bibcode:1971DSRA...18....1T. doi:10.1016/0011-7471(71)90011-8. ISSN   0011-7471.
  3. Louis, John P.; Petrie, Brian D.; Smith, Peter C. (January 1982). <0047:ootrwo>2.0.co;2 "Observations of Topographic Rossby Waves on the Continental Margin off Nova Scotia". Journal of Physical Oceanography. 12 (1): 47–55. Bibcode:1982JPO....12...47L. doi:10.1175/1520-0485(1982)012<0047:ootrwo>2.0.co;2. ISSN   0022-3670.
  4. Oey, L-Y.; Lee, H-C. (December 2002). "Deep Eddy Energy and Topographic Rossby Waves in the Gulf of Mexico". Journal of Physical Oceanography. 32 (12): 3499–3527. Bibcode:2002JPO....32.3499O. doi: 10.1175/1520-0485(2002)032<3499:deeatr>2.0.co;2 . ISSN   0022-3670.
  5. Hamilton, Peter (July 2009). "Topographic Rossby waves in the Gulf of Mexico". Progress in Oceanography. 82 (1): 1–31. Bibcode:2009PrOce..82....1H. doi:10.1016/j.pocean.2009.04.019. ISSN   0079-6611.
  6. Schmitz, William J. (March 1988). <0459:eotefi>2.0.co;2 "Exploration of the Eddy Field in the Midlatitude North Pacific". Journal of Physical Oceanography. 18 (3): 459–468. Bibcode:1988JPO....18..459S. doi:10.1175/1520-0485(1988)018<0459:eotefi>2.0.co;2. ISSN   0022-3670.
  7. Miyamoto, Masatoshi; Oka, Eitarou; Yanagimoto, Daigo; Fujio, Shinzou; Mizuta, Genta; Imawaki, Shiro; Kurogi, Masao; Hasumi, Hiroyasu (May 2017). "Characteristics and mechanism of deep mesoscale variability south of the Kuroshio Extension". Deep Sea Research Part I: Oceanographic Research Papers. 123: 110–117. Bibcode:2017DSRI..123..110M. doi:10.1016/j.dsr.2017.04.003. ISSN   0967-0637.
  8. QUAN, QI; CAI, ZHONGYA; JIN, GUANGZHEN; LIU, ZHIQIANG (2021-03-22). "Topographic Rossby Waves in the Abyssal South China Sea". Journal of Physical Oceanography. 51 (6): 1795. Bibcode:2021JPO....51.1795Q. doi: 10.1175/jpo-d-20-0187.1 . ISSN   0022-3670.
  9. Wang, Qiang; Zeng, Lili; Shu, Yeqiang; Li, Jian; Chen, Ju; He, Yunkai; Yao, Jinglong; Wang, Dongxiao; Zhou, Weidong (October 2019). "Energetic Topographic Rossby Waves in the Northern South China Sea". Journal of Physical Oceanography. 49 (10): 2697–2714. Bibcode:2019JPO....49.2697W. doi:10.1175/jpo-d-18-0247.1. ISSN   0022-3670. S2CID   202189386.