Twine

Last updated
Twine showing component strands Multiple thread.jpg
Twine showing component strands

Twine is a strong thread, light string or cord composed of string in which two or more thinner strands are twisted, and then twisted together (plied). The strands are plied in the opposite direction to that of their twist, which adds torsional strength to the cord and keeps it from unravelling. This process is sometimes called reverse wrap. [1] The same technique used for making twine is also used to make thread, which is thinner, yarn, and rope, which is stronger and thicker, generally with three or more strands.

Contents

Natural fibres used for making twine include wool, cotton, sisal, jute, hemp, henequen, paper, and coir. A variety of synthetic fibres are also used. Twine is a popular substance used in modern-day crafting.

Prehistoric

Men making twine. Japan, 1915 Making Twine (1915 by Elstner Hilton).jpg
Men making twine. Japan, 1915

The invention of twine is at least as important as the development of stone tools for early humans. [2] Indeed, Elizabeth Wayland Barber has called the development of twine, which can be made far stronger and longer than its component fibers, "the string revolution." [2] Twine could be used to fasten points and blades to arrows, spears, harpoons and other tools and to make snares, bags, baby slings, fishing and hunting nets and marine tackle, not to mention to secure firewood, haul goods and anchor tents and shelters. Twine is the foundation to both textile and rope making. Twine has been made of animal hair, including human, [3] sinews and plant material, often from the vascular tissue of a plant (known as bast), but also bark and even seed down, e.g. milkweed. However, unlike stone or metal tools, most twine is missing from the archaeological record because it is made of perishable materials that rarely survive over time. [4] In fact, the discovery of ancient beads and the dating of sea travel to at least 60,000 years ago suggests that the "string revolution" might have occurred much earlier than the Upper Paleolithic. [5] Plant twine was used for hafting stone tips by about 58,000 years ago in southern Africa. [6]

Paleolithic cord remnants have been discovered in a few places: Georgia's Dzudzuana Cave (30,000 years old), [7] [8] Israel's Ohalo II site (19,000 years old), [9] and France's Lascaux Cave (17,000 years old). [10] In 2016, a carved piece of mammoth ivory with three holes, dated at 40,000 years old, was unearthed at the Hohle Fels site, famous for the discovery of both Paleolithic female figurines and flutes. It has been identified as a tool for twining rope. [11] In the Americas, cordage has been found at the Windover Bog, in Florida, dating to 8000 years ago. [12] A small piece of cord discovered at Abris du Muras, in south-eastern France, has been dated to around 50,000 years ago. [13]

Early depictions of twine are few, but one of the around 200 Venus figurines that have been found across Eurasia is depicted as wearing a "string skirt" (the Venus of Lespugue, dated to 25,000 years ago). Barber notes that not only is each twist in the strings carved in detail, but also "the bottom end of each string [is shown] fraying out into a mass of loose fibers (not possible for e.g. a twisted piece of gut or sinew)." [14] [15]

Other evidence for the prehistoric use of twine is provided by impressions on metal or in pottery and other ceramic artifacts. [16] In the Fukui cave, Japan, such impressions date to 13,000 years ago. [17] Imprints of woven material in clay found at Dolni Vestonice I and several other sites in Moravia date to 26,000 years ago. [18] and were found along with needles and tools that were used to sew clothing and make nets for hunting small animals and birds. [19]

Beads, as well as shells and animal teeth with man-made holes, have also been used as indirect evidence of twining, as have net sinkers and tools with the marks of cord wear. [20] Beads have been found with the remnants of thread still trapped inside them. [21]

Historical manufacture

Binder twine securing a hay bale Baling twine, hay bale.jpg
Binder twine securing a hay bale

After the technique of making twine by hand was invented, various implements to produce thread for textile production such as spindles, spinning wheels and looms for spinning and weaving and tools for twine and rope-making were developed.

Process

The twining process begins with cordage, which can be any form of untwisted, twisted or braided combination of fibers. A cord is formed by the twisting of at least one ply of material or the braiding together of multiple plies. The number of plies and the type of material lends itself to the naming of the type and structure of the cord. A simple ply is one that is made from a single strand or bunch of material that is spun in the same direction whereas a compound ply is created by twisting several strands or bunches of material individually and then spinning those together in opposite directions to one another. [22]

Once twine is produced, it can be used to produce other forms of function, most commonly textiles and basketry. The spun twine is then combined using a process called twining in order to produce both types of object. The primary constituents of this twining process are known as the warp and weft or the foundation and stitch. Objects created with this method using varying techniques may also host unique structural decoration. Systematic passing of the warp can create images or patterned modifications. In accompaniment of warp modifications, dyed or naturally coloured materials may be used to accumulate patterns. Textural differences may be created in twined objects by intentional spacing of strands implemented in the weave. Lastly, other auxiliary materials can be incorporated into the object for further detail such as embroidery, feathers, appliques, etc. [23]

Classifications

There are several primary means of classifying objects such as threads, textiles and baskets created with twining. The way that the weft rows are spaced can be defined as open, closed or a combination of the two. These terms identify the closeness of the weft rows to one another and variation in this intentional spacing. The way that the warp and weft are interconnected creates different compositional arrangements. These arrangements can be simple, diagonal or both. The last main categorization comes from the direction that the weft is twisted. This is denoted as S-twist and Z-twist or both. In the S-twist the strands appear to come up as they are twisted left and the Z-twist appears to come up as they are twisted to the right.

Additional classifications that are typically recorded by anthropologists can include the width of the strands, the number of strands being used together to form the warp or weft, the number of warp and weft rows per unit centimeter, and the width of the gaps in the weft rows. Methods of preparation, composition, and creation are also of great importance. [22]

See also

Related Research Articles

Spinning is a twisting technique to form yarn from fibers. The fiber intended is drawn out, twisted, and wound onto a bobbin. A few popular fibers that are spun into yarn other than cotton, which is the most popular, are viscose, animal fibers such as wool, and synthetic polyester. Originally done by hand using a spindle whorl, starting in the 500s AD the spinning wheel became the predominant spinning tool across Asia and Europe. The spinning jenny and spinning mule, invented in the late 1700s, made mechanical spinning far more efficient than spinning by hand, and especially made cotton manufacturing one of the most important industries of the Industrial Revolution.

<span class="mw-page-title-main">Weaving</span> Technology for the production of textiles

Weaving is a method of textile production in which two distinct sets of yarns or threads are interlaced at right angles to form a fabric or cloth. Other methods are knitting, crocheting, felting, and braiding or plaiting. The longitudinal threads are called the warp and the lateral threads are the weft, woof, or filling. The method in which these threads are interwoven affects the characteristics of the cloth. Cloth is usually woven on a loom, a device that holds the warp threads in place while filling threads are woven through them. A fabric band that meets this definition of cloth can also be made using other methods, including tablet weaving, back strap loom, or other techniques that can be done without looms.

<span class="mw-page-title-main">Yarn</span> Long continuous length of interlocked fibres

Yarn is a long continuous length of interlocked fibres, used in sewing, crocheting, knitting, weaving, embroidery, ropemaking, and the production of textiles. Thread is a type of yarn intended for sewing by hand or machine. Modern manufactured sewing threads may be finished with wax or other lubricants to withstand the stresses involved in sewing. Embroidery threads are yarns specifically designed for needlework. Yarn can be made of a number of natural or synthetic materials, and comes in a variety of colors and thicknesses. Although yarn may be dyed different colours, most yarns are solid coloured with a uniform hue.

<span class="mw-page-title-main">Braid</span> Structure of strands of flexible material

A braid is a complex structure or pattern formed by interlacing three or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-stranded structure. More complex patterns can be constructed from an arbitrary number of strands to create a wider range of structures. The structure is usually long and narrow with each component strand functionally equivalent in zigzagging forward through the overlapping mass of the others. It can be compared with the process of weaving, which usually involves two separate perpendicular groups of strands.

<span class="mw-page-title-main">Rope</span> Length of braided strands

A rope is a group of yarns, plies, fibres, or strands that are twisted or braided together into a larger and stronger form. Ropes have tensile strength and so can be used for dragging and lifting. Rope is thicker and stronger than similarly constructed cord, string, and twine.

<span class="mw-page-title-main">Warp and weft</span> Two constituent threads of woven cloth

In the manufacture of cloth, warp and weft are the two basic components in weaving to transform thread and yarn into textile fabrics. The vertical warp yarns are held stationary in tension on a loom (frame) while the horizontal weft is drawn through the warp thread. In the terminology of weaving, each warp thread is called a warp end ; a pick is a single weft thread that crosses the warp thread.

In the textile arts, plying is a process of twisting one or more strings of yarn together to create a stronger yarn. Strands are twisted together in the direction opposite that in which they were spun. Plied yarns will not unravel, break, or degrade as easily as unplied yarns. When enough twist is added to the plies to counter the initial twist of each strand, the resulting yarn is "balanced", having no tendency to twist upon itself.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile manufacturing or textile engineering is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

TPI is a term used in the textile industry. It measures how much twist a yarn has, and can be calculated by counting the number of twists in an inch of yarn.

<span class="mw-page-title-main">Pile weave</span>

Pile weave is a form of textile created by weaving. This type of fabric is characterized by a pile—a looped or tufted surface that extends above the initial foundation, or 'ground' weave. The pile is formed by supplemental yarn running in the direction of the length of the fabric or the width of the fabric. Pile weaves include velvet and corduroy fabrics and machine-woven Berber carpets.

<span class="mw-page-title-main">Warp knitting</span> Manufacturing process

Warp knitting is defined as a loop-forming process in which the yarn is fed into the knitting zone, parallel to the fabric selvage. It forms vertical loops in one course and then moves diagonally to knit the next course. Thus the yarns zigzag from side to side along the length of the fabric. Each stitch in a course is made by many different yarns. Each stitch in one wale is made by several different yarns.

<span class="mw-page-title-main">Hand spinning</span> Method of turning fiber into thread

Spinning is an ancient textile art in which plant, animal or synthetic fibres are drawn out and twisted together to form yarn. For thousands of years, fibre was spun by hand using simple tools, the spindle and distaff. After the introduction of the spinning wheel in the 13th century, the output of individual spinners increased dramatically. Mass production later arose in the 18th century with the beginnings of the Industrial Revolution. Hand-spinning remains a popular handicraft.

The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, which turns it into cloth. The machine used for weaving is the loom. For decoration, the process of colouring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.

<span class="mw-page-title-main">Units of textile measurement</span> Systems for measuring textiles

Textile fibers, threads, yarns and fabrics are measured in a multiplicity of units.

<span class="mw-page-title-main">Māori traditional textiles</span>

Māori traditional textiles are the indigenous textiles of the Māori people of New Zealand. The organisation Te Roopu Raranga Whatu o Aotearoa, the national Māori weavers' collective, aims to preserve and foster the skills of making and using these materials.

Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.

<span class="mw-page-title-main">Salish weaving</span>

Salish are skilled weavers and knitters of the Pacific Northwest. They are most noted for their beautiful twill blankets many of which are very old. The adoption of new fabrics, dyes, and weaving techniques allow us to study a wide variety of Salish weavings today.

<span class="mw-page-title-main">Thread (yarn)</span> Type of yarn used for sewing

A thread is a long strand of material, often composed of several filaments or fibres, used for joining, creating or decorating textiles. Ancient Egyptians were known for creating thread using plant fibers, wool and hair. Today, thread can also be made of many different materials including but not limited to cotton, wool, flax, nylon, silk, polyester etc. There are also metal threads, which can be made of fine wire.

Doubling is a textile industry term synonymous with combining. It can be used for various processes during spinning. During the carding stage, several sources of roving are doubled together and drawn, to remove variations in thickness. After spinning, yarn is doubled for many reasons. Yarn may be doubled to produce warp for weaving, to make cotton for lace, crochet and knitting. It is used for embroidery threads and sewing threads, for example: sewing thread is usually 6-cable thread. Two threads of spun 60s cotton are twisted together, and three of these double threads are twisted into a cable, of what is now 5s yarn. This is mercerised, gassed and wound onto a bobbin.

<span class="mw-page-title-main">String (structure)</span> Flexible structure made from fibers twisted together

String is a long flexible structure made from fibers twisted together into a single strand, or from multiple such strands which are in turn twisted together. String is used to tie, bind, or hang other objects. It is also used as a material to make things, such as textiles, and in arts and crafts. String is a simple tool, and its use by humans is known to have been developed tens of thousands of years ago. In Mesoamerica, for example, string was invented some 20,000 to 30,000 years ago, and was made by twisting plant fibers together. String may also be a component in other tools, and in devices as diverse as weapons, musical instruments, and toys.

References

  1. "Practical Primitive | Skill of the Month: Reverse Wrap". www.practicalprimitive.com. Retrieved 2019-12-31.
  2. 1 2 Barber, E. J. W., 1940- (1994). Women's work : the first 20,000 years : women, cloth, and society in early times (1st ed.). New York: Norton. p. 45. ISBN   0-393-03506-9. OCLC   29595722.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  3. Hardy, Karen (2008-06-01). "Prehistoric string theory. How twisted fibres helped to shape the world". Antiquity. 82 (316): 271–280. doi:10.1017/S0003598X00096794. ISSN   0003-598X.
  4. Adovasio, J. M. (2007). The invisible sex : uncovering the true roles of women in prehistory. Soffer, Olga., Page, Jake. (1st Smithsonian books ed.). New York: Smithsonian Books. pp.  178. ISBN   978-0-06-117091-1. OCLC   71126923.
  5. Turnbull, David (2008). "String and Stories". Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Selin, Helaine, 1946- (2nd ed.). Berlin: Springer. p. 2043. ISBN   978-1-4020-4425-0. OCLC   261324840.
  6. LOMBARD, M. 2005a. Evidence for hunting and haftingduring the Middle Stone Age at Sibudu Cave,KwaZulu-Natal, South Africa.Journal of HumanEvolution48: 279-300.
  7. Kvavadze, E.; Bar-Yosef, O.; Belfer-Cohen, A.; Boaretto, E.; Jakeli, N.; Matskevich, Z.; Meshveliani, T. (2009-09-11). "30,000-Year-Old Wild Flax Fibers". Science. 325 (5946): 1359. Bibcode:2009Sci...325.1359K. doi:10.1126/science.1175404. ISSN   0036-8075. PMID   19745144.
  8. St. Clair, Kassia (2018). The Golden Thread: How Fabric Changed History. London: John Murray. p. 21. ISBN   978-1-4736-5903-2. OCLC   1057250632.
  9. Nadel, D.; Danin, A.; Werker, E.; Schick, T.; Kislev, M. E.; Stewart, K. (1994). "19,000-Year-Old Twisted Fibers From Ohalo II". Current Anthropology. 35 (4): 451–458. doi:10.1086/204303. ISSN   0011-3204.
  10. Hardy, Karen (2008-06-01). "Prehistoric string theory. How twisted fibres helped to shape the world". Antiquity. 82 (316): 273. doi:10.1017/S0003598X00096794. ISSN   0003-598X.
  11. "40, 000 Years of Rope-making". q-mag.org. Retrieved 2019-12-31.
  12. "What Ancient People Did With a Little String and a Lot of Ingenuity". ThoughtCo. Retrieved 2019-12-31.
  13. Hardy, B. L.; Moncel, M.-H.; Kerfant, C.; Lebon, M.; Bellot-Gurlet, L.; Mélard, N. (2020). "Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications". Scientific Reports. 10 (1): 4889. doi: 10.1038/s41598-020-61839-w . ISSN   2045-2322. PMC   7145842 .
  14. Barber, E. J. W., 1940- (1991). Prehistoric textiles : the development of cloth in the Neolithic and Bronze Ages with special reference to the Aegean. Princeton, N.J.: Princeton University Press. p. 40. ISBN   0-691-03597-0. OCLC   19922311.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  15. "The Lespugue Venus is a 25 000 years old ivory figurine of a nude female figure". www.donsmaps.com. Retrieved 2019-12-31.
  16. Hardy, Karen (2008-06-01). "Prehistoric string theory. How twisted fibres helped to shape the world". Antiquity. 82 (316): 271–280. doi:10.1017/S0003598X00096794. ISSN   0003-598X.
  17. "What Ancient People Did With a Little String and a Lot of Ingenuity". ThoughtCo. Retrieved 2019-12-31.
  18. Adovasio, J. M. (2007). The invisible sex : uncovering the true roles of women in prehistory. Soffer, Olga., Page, Jake. (1st Smithsonian books ed.). New York: Smithsonian Books. pp.  181=82. ISBN   978-0-06-117091-1. OCLC   71126923.
  19. Adovasio, J. M. (2007). The invisible sex : uncovering the true roles of women in prehistory. Soffer, Olga., Page, Jake. (1st Smithsonian books ed.). New York: Smithsonian Books. pp.  183. ISBN   978-0-06-117091-1. OCLC   71126923.
  20. Soffer, Olga (2004). "Recovering Perishable Technologies through Use Wear on Tools: Preliminary Evidence for Upper Paleolithic Weaving and Net Making". Current Anthropology. 45 (3): 407–413. doi:10.1086/420907. ISSN   0011-3204.
  21. Good, Irene (2001). "Archaeological Textiles: A Review of Current Research". Annual Review of Anthropology. 30: 209–226. doi:10.1146/annurev.anthro.30.1.209. ISSN   0084-6570. JSTOR   3069215.
  22. 1 2 Sutton, Mark (2014). "Analysis of Perishables". Archaeological Laboratory Methods: An Introduction (6th ed.). Dubuque, Iowa: Kendall Hunt. p. 352. ISBN   978-1465243799.
  23. Adovasio, J. M. (2010). Basketry Technology: A Guide to Identification and Analysis (Updated ed.). Walnut Creek, CA: Left Coast Press. ISBN   978-1598745573.