Von Neumann bicommutant theorem

Last updated

In mathematics, specifically functional analysis, the von Neumann bicommutant theorem relates the closure of a set of bounded operators on a Hilbert space in certain topologies to the bicommutant of that set. In essence, it is a connection between the algebraic and topological sides of operator theory.

Contents

The formal statement of the theorem is as follows:

Von Neumann bicommutant theorem. Let M be an algebra consisting of bounded operators on a Hilbert space H, containing the identity operator, and closed under taking adjoints. Then the closures of M in the weak operator topology and the strong operator topology are equal, and are in turn equal to the bicommutant M′′ of M.

This algebra is called the von Neumann algebra generated by M.

There are several other topologies on the space of bounded operators, and one can ask what are the *-algebras closed in these topologies. If M is closed in the norm topology then it is a C*-algebra, but not necessarily a von Neumann algebra. One such example is the C*-algebra of compact operators (on an infinite dimensional Hilbert space). For most other common topologies the closed *-algebras containing 1 are von Neumann algebras; this applies in particular to the weak operator, strong operator, *-strong operator, ultraweak, ultrastrong, and *-ultrastrong topologies.

It is related to the Jacobson density theorem.

Proof

Let H be a Hilbert space and L(H) the bounded operators on H. Consider a self-adjoint unital subalgebra M of L(H) (this means that M contains the adjoints of its members, and the identity operator on H).

The theorem is equivalent to the combination of the following three statements:

(i) clW(M) ⊆ M′′
(ii) clS(M) ⊆ clW(M)
(iii) M′′ ⊆ clS(M)

where the W and S subscripts stand for closures in the weak and strong operator topologies, respectively.

Proof of (i)

By definition of the weak operator topology, for any x and y in H, the map T → <Tx, y> is continuous in this topology. Therefore, for any operator O (and by substituting once yOy and once xOx), so is the map

Let S be any subset of L(H), and S′ its commutant. For any operator T not in S′, <OTx, y> - <TOx, y> is nonzero for some O in S and some x and y in H. By the continuity of the abovementioned mapping, there is an open neighborhood of T in the weak operator topology for which this is nonzero, therefore this open neighborhood is also not in S′. Thus S′ is closed in the weak operator, i.e. S′ is weakly closed. Thus every commutant is weakly closed, and so is M′′; since it contains M, it also contains its weak closure.

Proof of (ii)

This follows directly from the weak operator topology being coarser than the strong operator topology: for every point x in clS(M), every open neighborhood of x in the weak operator topology is also open in the strong operator topology and therefore contains a member of M; therefore x is also a member of clW(M).

Proof of (iii)

Fix XM′′. We will show X ∈ clS(M).

Fix an open neighborhood U of X in the strong operator topology. By definition of the strong operator topology, U contains a finite intersection U(h11) ∩...∩U(hnn) of subbasic open sets of the form U(h,ε) = {OL(H): ||Oh - Xh|| < ε}, where h is in H and ε > 0.

Fix h in H. Consider the closure cl(Mh) of Mh = {Mh : MM} with respect to the norm of H and equipped with the inner product of H. It is a Hilbert space (being a closed subspace of a Hilbert space H), and so has a corresponding orthogonal projection which we denote P. P is bounded, so it is in L(H). Next we prove:

Lemma.PM.
Proof. Fix xH. Then Px ∈ cl(Mh), so it is the limit of a sequence Onh with On in M for all n. Then for all TM, TOnh is also in Mh and thus its limit is in cl(Mh). By continuity of T (since it is in L(H) and thus Lipschitz continuous), this limit is TPx. Since TPx ∈ cl(Mh), PTPx = TPx. From this it follows that PTP = TP for all T in M.
By using the closure of M under the adjoint we further have, for every T in M and all x, yH:
thus TP = PT and P lies in M.

By definition of the bicommutant XP = PX. Since M is unital, hMh, hence Xh = XPh = PXh ∈ cl(Mh). Thus for every ε > 0, there exists T in M with ||XhTh|| < ε. Then T lies in U(h,ε).[ clarification needed ]

Thus in every open neighborhood U of X in the strong operator topology there is a member of M, and so X is in the strong operator topology closure of M.

Non-unital case

A C*-algebra M acting on H is said to act non-degenerately if for h in H, Mh = {0} implies h = 0. In this case, it can be shown using an approximate identity in M that the identity operator I lies in the strong closure of M. Therefore, the conclusion of the bicommutant theorem holds for M.

Related Research Articles

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating on a Hilbert space, but the same notion serves to define the concept of isomorphism between Hilbert spaces.

In functional analysis, a discipline within mathematics, given a C*-algebra A, the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of A and certain linear functionals on A. The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal.

In mathematics as well as physics, a linear operator acting on an inner product space is called positive-semidefinite if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all .

In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space , such that the functional sending an operator to the complex number is continuous for any vectors and in the Hilbert space.

In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.

In mathematics, specifically in operator theory, each linear operator on a Euclidean vector space defines a Hermitian adjoint operator on that space according to the rule

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

In mathematics, weak convergence in a Hilbert space is convergence of a sequence of points in the weak topology.

In functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

Hilbert space Generalization of Euclidean space allowing infinite dimensions

In mathematics, Hilbert spaces allow generalizing the methods of linear algebra and calculus from the finite-dimensional Euclidean spaces to spaces that may not have a finite dimension. A Hilbert space is a vector space equipped with an inner product which allows defining a distance function so that it becomes a complete metric space. They serve as a first template for extending the differential and integral calculus that is normally done in Rn, though this can be done more generally using normed spaces.

In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Schultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.

This is a glossary for the terminology in a mathematical field of functional analysis.

References