Xenos vesparum | |
---|---|
Male Xenos vesparum in its winged insect stage | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Strepsiptera |
Suborder: | Stylopidia |
Family: | Xenidae |
Genus: | Xenos |
Species: | X. vesparum |
Binomial name | |
Xenos vesparum Rossi, 1793 | |
Xenos vesparum is a parasitic insect species of the order Strepsiptera that are endoparasites of paper wasps in the genus Polistes (most commonly Polistes dominula) that was first described in 1793. [1] Like other members of this family, X. vesparum displays a peculiar lifestyle, and demonstrates extensive sexual dimorphism.
Males and female of this species show remarkable sexual dimorphism according to their mating system. Both develop inside the abdomen, where males pupate and emerge, while females permanently reside inside.
Adult males are free-living, flying insects, whose extremely short (<5 hours) adult lives are solely dedicated to finding a mate, which they are thought to locate by scent. [2] After locating a mate (who is protruding from the host wasp's abdomen), the male lands on the wasp's abdomen, holding on with its legs and wings, while avoiding the brushing of the wasp's hindlegs, which could potentially dislodge it. The male then inseminates the female by either spreading sperm around the female's genital opening, where it eventually reaches the haemocoel (body cavity), or by directly penetrating the female's cuticle (hypodermic insemination), injecting the sperm directly into the haemocoel. [3] The male then dies several minutes after mating. Their small size coupled with their extremely short lifespan has made male X. vesparum very difficult to study.
Males also develop very unusual eyes compared to other insects. The eyes consist of a very small number of ommatidia (around 65, but each eye can vary by 10-15), while most insect eyes have thousands per eye which are closely packed together. [2] The ommatidia are irregularly distributed across the eye and are well separated by cuticle. The function of these eyes is unknown, because mate finding, which is their only purpose as adults, seems to be done by scent and the structure of the eyes indicate that they are modified larval eyes. [2] Interestingly, they are externally quite similar to the eyes of phacopid trilobites. [4]
The forewings of these insects are modified into small, club-like organs called pseudohalteres. [5] These are to help the insect maintain equilibrium in flight, and function similarly to halteres found in Dipterans.[ citation needed ]
Female X. vesparum are markedly different from their male counterparts. They display a high degree of neoteny, and are permanent endoparasites of their hosts. They reside in the wasp's body cavity and never develop mouthparts, legs, eyes or wings, and their only form of genitalia is the ventral opening where males can inseminate them, as well as being the point of larval escape. [1] Females can often survive overwinter inside hibernating female wasps, which will emerge the following spring with underdeveloped ovaries, and will only be able to serve as vessels to spread the parasite's larvae as they are now effectively castrated. [6]
The first life stage of this species are, alongside adult males, the only free living stages of these insects' lives. Called "triungulins", these larvae exit the mother's genital opening via the ability to detect light, and are deposited either in a feeding/mating area for the wasps, or directly into the nest, depending on where the mother's host wasp was when releasing the larvae. [7] In the case of the former, they then must locate a foraging wasp using chemical cues, and then grasp on to it and be carried back to the nest. Once back in the nest, the triungulins seek out an appropriate host, which are immature wasps at various stages of development. This process is known to be nonrandom, because preference for infecting females has been recorded. [1] The penetration of the host's abdomen is done without creating a wound, instead the larva enters the wasp's abdomen via mechanical separation of the host's cuticle. This step is essential in delaying or avoiding the initial immune response that would come with creation of a wound. The triungulin then moults into its second stage without ecdysis, a feature only seen in strepsipterans. [1]
The second and third larval stages grow extensively, but slowly, possibly to avoid ill effects to the host, whose survival is paramount to the parasite's survival. [8] During these life stages, X. vesparum are able to passively and actively avoid the host's immune system. The exact mechanism for this is unknown, but it is possible that the parasite's surface has chemical properties that allow it to remain concealed from the host immune system, and the ability to moult without ecdysis is likely a method to retain this protection and is a preadaptation for its endoparasitic lifestyle. [1]
The fourth and final life cycle stage is the development to the free living male or neotenic female form, followed by their whole or partial emergence respectively. The male pupates and develops into the final free living form, and his pupae extrudes from the wasp's abdomen, providing an emergence route for the adult male. [8] Conversely, the female develops into the final neotenic form and extrudes from the host abdomen far enough for the genital opening to be reached by a mate, as well as far enough to allow larvae to escape. In both cases, this extrusion of the female parasite or male pupa from the host abdomen is referred to as "stylopization", referring to the family of these insects. [8]
Female worker wasps infected with X. vesparum appear to have their behaviour modified because they act as if they are future queens and cease working, abandoning the nest before the uninfected future foundresses and males do, and form aggregations outside of the nest. When the uninfected future queens leave the nest to go to these mating grounds, it provides an area where uninfected and infected wasps mix, and this is often where release of infective larvae occurs. [9] Because the parasite does not modify male wasp behaviour, it is a "dead end" for female X. vesparum as the male wasps do not join in these large aggregations and provide little opportunity for the parasite to receive a mate. Additionally, the male wasp dies before winter, eliminating the chance of the larvae spreading in hibernating aggregations. [10] However, if infected with a male parasite, the male wasp is not a "dead end" because the free living male parasite can emerge and fly to a suitable mate within the mating aggregations. This may explain the recorded preference X. vesparum larvae have for infecting female wasps. [1]
A trend noted in paper wasps infected by this parasite is that they appear to exhibit a strong preference to congregating on Campsis radicans (trumpet creeper) bushes. This indicates a likely case of coevolution between parasite and host because the wasps are manipulated to prefer trumpet creeper bushes which provide shelter and excellent nutrition for the wasp, increasing its chance of survival, and by extension, increasing the parasite's chances as well. [11] In addition, the preference towards a specific plant type allows a greater chance of the parasite spreading because many foraging wasps are congregated in one spot, providing a vector for released infective larvae to reach the nest and infect young wasps.
Parasitized female wasps feature undeveloped ovaries as well as lowered levels of juvenile hormones and they abandon the colony without performing any of their caste's duties, meaning the host is castrated and reproductively "dead", leading some to describe X. vesparum a parasitoid as it applies to female wasps. [10] The effects on the male wasp's reproductive health is less understood. It appears that, at least for light to moderate parasite loads, the reproductive health of parasitized male wasps is virtually unaffected, while the effects of highly parasitized individuals (>4 parasites) is unknown. [12]
The Strepsiptera are an order of insects with eleven extant families that include about 600 described species. They are endoparasites of other insects, such as bees, wasps, leafhoppers, silverfish, and cockroaches. Females of most species never emerge from the host after entering its body, finally dying inside it. The early-stage larvae do emerge because they must find an unoccupied living host, and the short-lived males must emerge to seek a receptive female in her host. They are believed to be most closely related to beetles, from which they diverged 300–350 million years ago, but do not appear in the fossil record until the mid-Cretaceous around 100 million years ago.
Paper wasps are vespid wasps and typically refers to members of the vespid subfamily Polistinae, though it often colloquially includes members of the subfamilies Vespinae and Stenogastrinae, discussed elsewhere, which also make nests out of paper. Paper wasp nests are characterized by open combs with down pointing cells. Some types of paper wasps are also sometimes called umbrella wasps, due to the distinctive design of their nests.
Stylopidae is a family of twisted-winged insects in the order Strepsiptera. There are about 15 genera and more than 330 described species in Stylopidae.
A planidium is a specialized form of insect larva seen in the first-instar of a few families of insects that have parasitoidal ways of life. They are usually flattened, highly sclerotized (hardened), and quite mobile. The function of the planidial stage is to find a host on which the later larval instars may feed, generally until the insect pupates.
The European paper wasp is one of the most common and well-known species of social wasps in the genus Polistes. Its diet is more diverse than those of most Polistes species—many genera of insects versus mainly caterpillars in other Polistes—giving it superior survivability compared to other wasp species during a shortage of resources.
Polistes gallicus is a species of paper wasp found in various parts of Europe, excluding England, Denmark, and Scandinavia, from warmer climates to cooler regions north of the Alps. Nests of these social insects are created in these various conditions. The Polistes species use an oral secretion to construct their nests, which consist of a combination of saliva and chewed plant fibers. This structural mixture physically protects the nest from various harsh elements and from weathering over time.
Traumatic insemination, also known as hypodermic insemination, is the mating practice in some species of invertebrates in which the male pierces the female's abdomen with his aedeagus and injects his sperm through the wound into her abdominal cavity (hemocoel). The sperm diffuses through the female's hemolymph, reaching the ovaries and resulting in fertilization.
A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. The wasps do not constitute a clade, a complete natural group with a single ancestor, as bees and ants are deeply nested within the wasps, having evolved from wasp ancestors. Wasps that are members of the clade Aculeata can sting their prey.
Xenos is a genus of insects belonging to the family Xenidae. The word derives from the Greek word for strange. A species of the genus is Xenos vesparum, first described by Pietro Rossi in 1793. The females are permanent entomophagous endoparasites of Polistes paper wasps. They dwell their whole lives in the abdomens of wasps.
Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. Polistes metricus is dark colored, with yellow tarsi and black tibia. Nests of Polistes metricus can be found attached to the sides of buildings, trees, and shrubbery.
Polistes exclamans, the Guinea paper wasp, is a social wasp and is part of the family Vespidae of the order Hymenoptera. It is found throughout the United States, Mexico, the Bahamas, Jamaica and parts of Canada. Due to solitary nest founding by queens, P. exclamans has extended its range in the past few decades and now covers the eastern half of the United States, as well as part of the north. This expansion is typically attributed to changing global climate and temperatures. P. exclamans has three specific castes, including males, workers, and queens, but the dominance hierarchy is further distinguished by age. The older the wasp is, the higher it is in ranking within the colony. In most P. exclamans nests, there is one queen who lays all the eggs in the colony. The physiological similarities between the worker and queen castes have led to experiments attempting to distinguish the characteristics of these two castes and how they are determined, though males have easily identifiable physiological characteristics. Since P. exclamans live in relatively small, open combed nests, they are often subject to predators and parasites, such as Chalcoela iphitalis, Elasmus polistis, and birds. P. exclamans have defense and recognition strategies that help protect against these predators and parasites.
Polistes carnifex, commonly known as the executioner wasp or executioner paper wasp, is a neotropical vespid wasp in the cosmopolitan genus Polistes.
Polistes nimpha is a eusocial paper wasp found all over Europe, with particular sightings in Turkey, Finland, Estonia, and Latvia. It is also found in northern Africa, Pakistan, Iran, India, Kazakhstan, Mongolia, and China. The climate in these areas is relatively cold and snowy in the winter, while summers are usually hot and dry, with steppe vegetation. Polistes nimpha colonies are relatively small and easily manipulated.
Polistes atrimandibularis is one of four obligate social parasites among the Polistes wasps found in Europe. Of the four social paper wasp parasite species known, it is the smallest. It parasitizes multiple species such as P. dominula, P. nimpha, P. associus, P. gallicus, and P. biglumis. Females of P. atrimandibularis are unable to build a nest or produce workers, and therefore rely entirely on the host colony.
Polistes biglumis is a species of social wasp within Polistes, the most common genus of paper wasp. It is distinguished mainly by its tendency to reside in montane climates in meadows or alpine areas. Selection pressure from the wasp's environment has led to several idiosyncrasies of its behavior and lifecycle with respect to its relative species in the genus Polistes. It alone among paper wasps is often polyandrous. In addition, it has a truncated nesting season that gives rise to unique competitive dynamics among females of the species. P. biglumis wasps use an odor-based recognition system that is the basis for all wasp-to-wasp interaction of the species. The wasp's lifecycle is highly intertwined with that of Polistes atrimandibularis, an obligate social parasite wasp that frequently invades the combs of P. biglumis wasps.
Polistes semenowi is a species of paper wasp in the genus Polistes that is found in southeastern and southern central Europe, as well as central Asia, and was until 2017 erroneously known by the name Polistes sulcifer, while a different species was incorrectly believed to represent P. semenowi. It is one of only four known Polistes obligate social parasites, sometimes referred to as "cuckoo paper wasps", and its host is the congeneric species Polistes dominula. As an obligate social parasite, this species has lost the ability to build nests, and relies on the host workers to raise its brood. P. semenowi females use brute force, followed by chemical mimicry in order to successfully usurp a host nest and take over as the queen.
Polistes dorsalis is a species of social wasps that can be found throughout various parts of North America. It is classified under the Vespidae within the genus of Polistes. Male Polistes dorsalis wasps can be distinguished from other Polistes species by their distinctly prominent median tubercle of sternum 7. Both sexes can also be recognized due to their v- shaped yellow markings on their head. They are distributed widely across North America and can be found in sheltered nests, typically closer to the ground. These wasps live in a dominance hierarchy in which the queen's role differs from that of ordinary workers. When threatened, these wasps can deliver moderately painful stings. Their venom might also be of human interest for their antimicrobial uses.
Polistes erythrocephalus is a species of paper wasp in the subfamily Polistinae of family Vespidae found in Central and South America. P. erythrocephalus is a eusocial wasp, meaning that it possesses both reproductive and non-reproductive castes. The cooperation between the two castes to raise young demonstrates the altruistic nature of these wasps. P. erythrocephalus exhibits a four-stage colony cycle, as do many other Polistes wasps. This species generally feeds on larvae, occasionally their own, and is preyed upon by species such as army ants.
Melittobia australica is a species of chalcid wasp from the family Eulophidae which is a gregarious ecto-parasitoid of acuealate Hymenoptera.
Caenocholax fenyesi is a species of twisted-winged parasitic insects in the order Strepsiptera and family Myrmecolacidae. It has a sporadic distribution throughout North America, Central America, and South America. Chaenochlax brasiliensis is the only other named species in the genus.