1,6-Hexanediol

Last updated
1,6-Hexanediol
1,6-Hexanediol.svg
Names
Preferred IUPAC name
Hexane-1,6-diol
Other names
Hexamethylene glycol; 1,6-Dihydroxyhexane; 1,6-Hexylene glycol; Hexamethylenediol; HDO
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.010.068 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-074-0
PubChem CID
RTECS number
  • MO2100000
UNII
  • InChI=1S/C6H14O2/c7-5-3-1-2-4-6-8/h7-8H,1-6H2 Yes check.svgY
    Key: XXMIOPMDWAUFGU-UHFFFAOYSA-N Yes check.svgY
  • OCCCCCCO
Properties
C6H14O2
Molar mass 118.176 g·mol−1
Density 0.967
Melting point 42 °C (108 °F; 315 K)
Boiling point 250 °C (482 °F; 523 K)
500g/L [1]
Solubility soluble in ethanol and acetone, slightly soluble in diethyl ether, insoluble in benzene. [2]
Hazards
Flash point 102 °C (216 °F; 375 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1,6-Hexanediol is an organic compound with the formula (CH2CH2CH2OH)2. It is a colorless water-soluble solid. [3]

Contents

Production

1,6-Hexanediol is prepared by the hydrogenation of adipic acid or its esters. [3] [4] Laboratory preparation could be achieved by reduction of adipates with lithium aluminium hydride, although this method is impractical on a commercial scale.

Properties

As 1,6-hexanediol contains hydroxyl groups, it undergoes the typical chemical reactions of alcohols such as dehydration, substitution, and esterification. Oxidation with pyridinium chlorochromate gives adipaldehyde. [5]

Dehydration of 1,6-hexanediol gives oxepane, 2-methyltetrahydropyran and 2-ethyltetrahydrofuran. Corresponding thiophene and pyrrolidone can be made by reacting 1,6-hexanediol with hydrogen sulfide and ammonia respectively. [6]

Uses

1,6-Hexanediol is widely used for industrial polyester and polyurethane production.. [3]

1,6-Hexanediol can improve the hardness and flexibility of polyesters as it contains a fairly long hydrocarbon chain. In polyurethanes, it is used as a chain extender, and the resulting modified polyurethane has high resistance to hydrolysis as well as mechanical strength, but with a low glass transition temperature.

It is also an intermediate to acrylics as a crosslinking agent, e.g. hexanediol diacrylate. [3] Unsaturated polyester resins have also been made from 1,6-hexanediol, along with styrene, maleic anhydride and fumaric acid. [6]

Uses to study biomolecular condensates

1,6-Hexanediol has been used to characterize biomolecular condensates. The material properties of condensates can be examined to determine if they are solid or liquid condensates. 1,6-Hexanediol has been reported to interfere with weak hydrophobic protein-protein or protein-RNA interactions that comprise liquid condensates. 1,6-Hexanediol has been reported to dissolve liquid but not solid condensates. [7] 2,5-Hexanediol and 1,4-butanediol have been observed to have minimal effect on behavior of disorderd proteins as compared to 1,6-hexanediol. [8] [9]

Safety

1,6-Hexanediol [10] has low toxicity and low flammability, and is generally considered as safe. It is not irritating to skin, but may irritate the respiratory tract or mucous membranes. Dust or vapor of the compound can irritate or damage the eyes. [1]

Related Research Articles

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Polyurethane</span> Polymer composed of a chain of organic units joined by carbamate (urethane) links

Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.

In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.

<span class="mw-page-title-main">Oxidizing agent</span> Chemical compound used to oxidize another substance in a chemical reaction

An oxidizing agent is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent. In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens.

Chromic acid is jargon for a solution formed by the addition of sulfuric acid to aqueous solutions of dichromate. It consists at least in part of chromium trioxide.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol may also be called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. They are used as protecting groups of carbonyl groups, making them essential in synthesis of organic chemistry.

<span class="mw-page-title-main">Pyridinium chlorochromate</span> Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

Dodecahedrane is a chemical compound, a hydrocarbon with formula C20H20, whose carbon atoms are arranged as the vertices (corners) of a regular dodecahedron. Each carbon is bound to three neighbouring carbon atoms and to a hydrogen atom. This compound is one of the three possible Platonic hydrocarbons, the other two being cubane and tetrahedrane.

<span class="mw-page-title-main">Phosphorus pentoxide</span> Chemical compound

Phosphorus pentoxide is a chemical compound with molecular formula P4O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydrating agent.

<span class="mw-page-title-main">Danishefsky Taxol total synthesis</span>

The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

<span class="mw-page-title-main">Collins reagent</span> Chemical compound

Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane. This metal-pyridine complex, a red solid, is used to oxidize primary alcohols to the corresponding aldehydes and secondary alcohols to the corresponding ketones. This complex is a hygroscopic orange solid.

<span class="mw-page-title-main">Cornforth reagent</span> Chemical compound

The Cornforth reagent (pyridinium dichromate or PDC) is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.

<span class="mw-page-title-main">Polytetrahydrofuran</span> Chemical compound

Polytetrahydrofuran, also called poly(tetramethylene ether) glycol or poly(tetramethylene oxide), is a collection of chemical compounds with formula HO(CH2)4O(CH2)4)nOH or HO((CH2)4O-)n-H. The material is a mixture of polyether diols terminated with alcohol groups. It is produced by polymerization of tetrahydrofuran as well as 1,4-butanediol.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters where the carbon carries a higher oxidation state. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

A chromate ester is a chemical structure that contains a chromium atom (symbol Cr) in a +6 oxidation state that is connected via an oxygen (O) linkage to a carbon (C) atom. The Cr itself is in its chromate form, with several oxygens attached, and the Cr–O–C attachment makes this chemical group structurally similar to other ester functional groups. They can be synthesized from various chromium(VI) metal compounds, such as CrO3, chromium chloride complexes, and aqueous chromate ions, and tend to react via redox reactions to liberate chromium(IV).

<span class="mw-page-title-main">Spirorenone</span> Chemical compound

Spirorenone (INN) is a steroidal antimineralocorticoid of the spirolactone group that was never marketed. Spirorenone possesses 5–8 times the antimineralocorticoid activity of spironolactone in animal studies. The initial discovery of spirorenone was deemed a great success, as no compound with greater antimineralocorticoid activity had been developed since spironolactone in 1957. Moreover, spirorenone itself has virtually no affinity for the androgen receptor while its progestogenic activity shows species differences, being somewhat greater than that of spironolactone in rabbits but absent in mice and rats. As such, it was characterized as a highly potent antimineralocorticoid with far fewer hormonal side effects relative to spironolactone.

Sulfonium-based oxidations of alcohols to aldehydes summarizes a group of organic reactions that transform a primary alcohol to the corresponding aldehyde (and a secondary alcohol to the corresponding ketone). Selective oxidation of alcohols to aldehydes requires circumventing over-oxidation to the carboxylic acid. One popular approach are methods that proceed through intermediate alkoxysulfonium species (RO−SMe+
2
X-
, e.g. compound 6) as detailed here. Since most of these methods employ dimethylsulfoxide (DMSO) as oxidant and generate dimethylsulfide, these are often colloquially summarized as DMSO-oxidations. Conceptually, generating an aldehyde and dimethylsulfide from an alcohol and DMSO requires a dehydrating agent for removal of H2O, ideally an electrophile simultaneously activating DMSO. In contrast, methods generating the sulfonium intermediate from dimethylsulfide do not require a dehydrating agent. Closely related are oxidations mediated by dimethyl selenoxide and by dimethyl selenide.

1,2,6-Hexanetriol is a trivalent alcohol with two primary and one secondary hydroxy group. It is similar to glycerol in many respects and is used as a substitute for glycerol in many applications due to its more advantageous properties, such as higher thermal stability and lower hygroscopicity.

<span class="mw-page-title-main">Adipaldehyde</span> Chemical compound

Adipaldehyde is the organic compound with the formula (CH2)4(CHO)2. It is a colorless oil that is usually encountered as an aqueous solution because it is highly reactive like many dialdehydes. The compound has attracted interest as a precursor to nylon-related polymers. It can be produced by double hydroformylation of 1,3-butadiene, but this methodology has not achieved commercialization. It has been prepared by oxidation of 1,6-hexanediol with pyridinium chlorochromate.

References

  1. 1 2 Chemicals and reagents 2008-2010, Merck
  2. CRC Handbook of Chemistry and Physics, 87th Edition
  3. 1 2 3 4 Peter Werle; Marcus Morawietz; Stefan Lundmark; Kent Sörensen; Esko Karvinen; Juha Lehtonen (2008). "Alcohols, Polyhydric". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_305.pub2. ISBN   978-3527306732.
  4. Lazier, W. A.; Hill, J. W.; Amend, W. J. (1939). "Hexamethylene glycol". Org. Synth. 19: 48. doi:10.15227/orgsyn.019.0048.
  5. Corey, E.J.; Suggs, J.William (1975). "Pyridinium Chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds". Tetrahedron Letters. 16 (31): 2647–2650. doi:10.1016/s0040-4039(00)75204-x.
  6. 1 2 BASF intermediates, BASF
  7. Kroschwald, Sonja; Maharana, Shovamayee; Simon, Alberti (2017-05-22). "Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments". Matters. doi: 10.19185/matters.201702000010 . ISSN   2297-8240.
  8. Kato, Masato; McKnight, Steven L. (2018-06-20). "A Solid-State Conceptualization of Information Transfer from Gene to Message to Protein". Annual Review of Biochemistry. 87: 351–390. doi:10.1146/annurev-biochem-061516-044700. ISSN   1545-4509. PMID   29195049. S2CID   28314614.
  9. Franco, Hector L.; Nagari, Anusha; Kraus, W. Lee (2015-04-02). "TNFα signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome". Molecular Cell. 58 (1): 21–34. doi:10.1016/j.molcel.2015.02.001. ISSN   1097-4164. PMC   4385449 . PMID   25752574.
  10. Solutions, Navux Commerce. "1,6 Hexanediol (Cas 629-11-8) - Bulk Specialty Chemical Supplier & distributor". www.parchem.com. Retrieved 2024-06-27.