10-hydroxytaxane O-acetyltransferase

Last updated
10-hydroxytaxane O-acetyltransferase
Identifiers
EC no. 2.3.1.163
CAS no. 227465-96-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a 10-hydroxytaxane O-acetyltransferase (EC 2.3.1.163) is an enzyme that catalyzes the chemical reaction

acetyl-CoA + 10-desacetyltaxuyunnanin C CoA + taxuyunnanin C

Thus, the two substrates of this enzyme are acetyl-CoA and 10-desacetyltaxuyunnanin C, whereas its two products are CoA and taxuyunnanin C.

This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is acetyl-CoA:taxan-10beta-ol O-acetyltransferase. This enzyme is also called acetyl coenzyme A: 10-hydroxytaxane O-acetyltransferase.

Related Research Articles

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production. Coenzyme A consists of a β-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3'-phosphorylated ADP. The acetyl group of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a "high energy" bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol).

<span class="mw-page-title-main">Choline acetyltransferase</span> Protein-coding gene in the species Homo sapiens

Choline acetyltransferase is a transferase enzyme responsible for the synthesis of the neurotransmitter acetylcholine. ChAT catalyzes the transfer of an acetyl group from the coenzyme acetyl-CoA to choline, yielding acetylcholine (ACh). ChAT is found in high concentration in cholinergic neurons, both in the central nervous system (CNS) and peripheral nervous system (PNS). As with most nerve terminal proteins, ChAT is produced in the body of the neuron and is transported to the nerve terminal, where its concentration is highest. Presence of ChAT in a nerve cell classifies this cell as a "cholinergic" neuron. In humans, the choline acetyltransferase enzyme is encoded by the CHAT gene.

Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.

<span class="mw-page-title-main">Acetyl-CoA C-acetyltransferase</span> Class of enzymes

In enzymology, an acetyl-CoA C-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a [acyl-carrier-protein] S-acetyltransferase is an enzyme that catalyzes the reversible chemical reaction

<span class="mw-page-title-main">Carnitine O-acetyltransferase</span> Enzyme

Carnitine O-acetyltransferase also called carnitine acetyltransferase is an enzyme that encoded by the CRAT gene that catalyzes the chemical reaction

In enzymology, a deacetylcephalosporin-C acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a deacetylvindoline O-acetyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Diamine N-acetyltransferase</span>

In enzymology, a diamine N-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, formate C-acetyltransferase is an enzyme. Pyruvate formate lyase is found in Escherichia coli and other organisms. It helps regulate anaerobic glucose metabolism. Using radical non-redox chemistry, it catalyzes the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. The reaction occurs as follows:

In enzymology, a glycine C-acetyltransferase is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">Homocitrate synthase</span> Enzyme

In enzymology, a homocitrate synthase (EC 2.3.3.14) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Hydroxymethylglutaryl-CoA synthase</span> Class of enzymes

In molecular biology, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate-dependent isoprenoid biosynthesis pathway. HMG-CoA is an intermediate in both cholesterol synthesis and ketogenesis. This reaction is overactivated in patients with diabetes mellitus type 1 if left untreated, due to prolonged insulin deficiency and the exhaustion of substrates for gluconeogenesis and the TCA cycle, notably oxaloacetate. This results in shunting of excess acetyl-CoA into the ketone synthesis pathway via HMG-CoA, leading to the development of diabetic ketoacidosis.

In enzymology, a N6-hydroxylysine O-acetyltransferase (EC 2.3.1.102) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetylneuraminate 4-O-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetylneuraminate 7-O(or 9-O)-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a polysialic-acid O-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a salutaridinol 7-O-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a taxadien-5alpha-ol O-acetyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Salutaridinol</span> Chemical compound

Salutaridinol is a modified benzyltetrahydroisoquinoline alkaloid with the formula C19H23NO4. It is produced in the secondary metabolism of the opium poppy Papaver somniferum (Papaveraceae) as an intermediate in the biosynthetic pathway that generates morphine. As an isoquinoline alkaloid, it is fundamentally derived from tyrosine as part of the shikimate pathway of secondary metabolism. Salutaridinol is a product of the enzyme salutaridine: NADPH 7-oxidoreductase and the substrate for the enzyme salutaridinol 7-O-acetyltransferase, which are two of the four enzymes in the morphine biosynthesis pathway that generates morphine from (R)-reticuline. Salutaridinol's unique position adjacent to two of the four enzymes in the morphine biosynthesis pathway gives it an important role in enzymatic, genetic, and synthetic biology studies of morphine biosynthesis. Salutaridinol levels are indicative of the flux through the morphine biosynthesis pathway and the efficacy of both salutaridine: NADPH 7-oxidoreductase and salutaridinol 7-O-acetyltransferase.

References