2-oxopropyl-CoM reductase (carboxylating)

Last updated
2-oxopropyl-CoM reductase (carboxylating)
Identifiers
EC no. 1.8.1.5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a 2-oxopropyl-CoM reductase (carboxylating) (EC 1.8.1.5) is an enzyme that catalyzes the chemical reaction

2-mercaptoethanesulfonate + acetoacetate + NADP+ 2-(2-oxopropylthio)ethanesulfonate + CO2 + NADPH

The 3 substrates of this enzyme are 2-mercaptoethanesulfonate, acetoacetate, and NADP+, whereas its 3 products are 2-(2-oxopropylthio)ethanesulfonate, CO2, and NADPH.

This enzyme belongs to the family of oxidoreductases, specifically those acting on a sulfur group of donors with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is 2-mercaptoethanesulfonate, acetoacetate:NADP+ oxidoreductase (decarboxylating). Other names in common use include NADPH:2-(2-ketopropylthio)ethanesulfonate, oxidoreductase/carboxylase, and NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase.

Structural studies

As of late 2007, two structures have been solved for this class of enzymes, with PDB accession codes 2C3C and 2C3D.

Related Research Articles

Pyruvate dehydrogenase (NADP+) EC 1.2.1.51 is an enzyme that should not be confused with Pyruvate dehydrogenase (acetyltransferase) EC 1.2.4.1.

<span class="mw-page-title-main">Coenzyme M</span> Chemical compound

Coenzyme M is a coenzyme required for methyl-transfer reactions in the metabolism of archaeal methanogens, and in the metabolism of other substrates in bacteria. It is also a necessary cofactor in the metabolic pathway of alkene-oxidizing bacteria. CoM helps eliminate the toxic epoxides formed from the oxidation of alkenes such as propylene. The structure of this coenzyme was discovered by CD Taylor and RS Wolfe in 1974 while they were studying methanogenesis, the process by which carbon dioxide is transformed into methane in some anaerobic bacteria. The coenzyme is an anion with the formula HSCH
2
CH
2
SO
3
. It is named 2-mercaptoethanesulfonate and abbreviated HS–CoM. The cation is unimportant, but the sodium salt is most available. Mercaptoethanesulfonate contains both a thiol, which is the main site of reactivity, and a sulfonate group, which confers solubility in aqueous media.

<span class="mw-page-title-main">Hydroxymethylglutaryl-CoA reductase (NADPH)</span>

In enzymology, a hydroxymethylglutaryl-CoA reductase (NADPH) (EC 1.1.1.34) is an enzyme that catalyzes the chemical reaction

Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP<sup>+</sup>) Enzyme

Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40) or NADP-malic enzyme (NADP-ME) is an enzyme that catalyzes the chemical reaction in the presence of a bivalent metal ion:

<span class="mw-page-title-main">Phosphogluconate dehydrogenase (decarboxylating)</span>

In enzymology, a phosphogluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) is an enzyme that catalyzes the chemical reaction

In enzymology, a 2-(R)-hydroxypropyl-CoM dehydrogenase (EC 1.1.1.268) is an enzyme that catalyzes the chemical reaction

In enzymology, a 2-(S)-hydroxypropyl-CoM dehydrogenase (EC 1.1.1.269) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-Hydroxybutyryl-CoA dehydrogenase</span> Class of enzymes

In enzymology, a 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acyl-CoA dehydrogenase (NADP+)</span> Class of enzymes

In enzymology, an acyl-CoA dehydrogenase (NADP+) (EC 1.3.1.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a cis-2-enoyl-CoA reductase (NADPH) (EC 1.3.1.37) is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-2-enoyl-CoA reductase (NADPH) (EC 1.3.1.38) is an enzyme that catalyzes the chemical reaction

In enzymology, a malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) is an enzyme that catalyzes the chemical reaction

In enzymology, an oxoglutarate dehydrogenase (NADP+) (EC 1.2.1.52) is an enzyme that catalyzes the chemical reaction

In enzymology, a ferredoxin-NADP+ reductase (EC 1.18.1.2) abbreviated FNR, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">(Methionine synthase) reductase</span> Class of enzymes

[Methionine synthase] reductase, or Methionine synthase reductase, encoded by the gene MTRR, is an enzyme that is responsible for the reduction of methionine synthase inside human body. This enzyme is crucial for maintaining the one carbon metabolism, specifically the folate cycle. The enzyme employs one coenzyme, flavoprotein.

In enzymology, a CoA-glutathione reductase (EC 1.8.1.10) is an enzyme that catalyzes the chemical reaction

In enzymology, an acetone carboxylase (EC 6.4.1.6) is an enzyme that catalyzes the chemical reaction

Malonyl CoA reductase (malonate semialdehyde-forming) (EC 1.2.1.75, NADP-dependent malonyl CoA reductase, malonyl CoA reductase (NADP)) is an enzyme with systematic name malonate semialdehyde:NADP+ oxidoreductase (malonate semialdehyde-forming). This enzyme catalyse the following chemical reaction

Acrylyl-CoA reductase (NADPH) (EC 1.3.1.84) is an enzyme with systematic name propanoyl-CoA:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

The enzyme 2-hydroxypropyl-CoM lyase (EC 4.4.1.23, epoxyalkane:coenzyme M transferase, epoxyalkane:CoM transferase, epoxyalkane:2-mercaptoethanesulfonate transferase, coenzyme M-epoxyalkane ligase, epoxyalkyl:CoM transferase, epoxypropane:coenzyme M transferase, epoxypropyl:CoM transferase, EaCoMT, 2-hydroxypropyl-CoM:2-mercaptoethanesulfonate lyase (epoxyalkane-ring-forming), (R)-2-hydroxypropyl-CoM 2-mercaptoethanesulfonate lyase (cyclizing, (R)-1,2-epoxypropane-forming)) is an enzyme with systematic name (R)-[or (S)]-2-hydroxypropyl-CoM:2-mercaptoethanesulfonate lyase (epoxyalkane-ring-forming). This enzyme catalyses the following reaction:

References