23S rRNA (uridine2479-2'-O)-methyltransferase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 2.1.1.208 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
23S rRNA (uridine2479-2'-O)-methyltransferase (EC 2.1.1.208, AviRb) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uridine2479-2'-O)-methyltransferase. [1] [2] [3] This enzyme catalyses the following chemical reaction
Streptomyces viridochromogenes produces the antibiotic avilamycin A which binds to the 50S ribosomal subunit to inhibit protein synthesis. [4]
Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.
23S rRNA (uridine2552-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uridine2552-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (guanine1835-N2)-methyltransferase (EC 2.1.1.174, ygjO (gene), rlmG (gene), ribosomal RNA large subunit methyltransferase G) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine1835-N2)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (pseudouridine1915-N3)-methyltransferase (EC 2.1.1.177, YbeA, RlmH, pseudouridine methyltransferase, m3Psi methyltransferase, Psi1915-specific methyltransferase, rRNA large subunit methyltransferase H) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (pseudouridine1915-N3)-methyltransferase. This enzyme catalyses the following chemical reaction
16S rRNA (guanine1405-N7)-methyltransferase (EC 2.1.1.179, methyltransferase Sgm, m7G1405 Mtase, Sgm Mtase, Sgm, sisomicin-gentamicin methyltransferase, sisomicin-gentamicin methylase, GrmA, RmtB, RmtC, ArmA) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (guanine1405-N7)-methyltransferase. This enzyme catalyses the following chemical reaction
16S rRNA (adenine1408-N1)-methyltransferase (EC 2.1.1.180, kanamycin-apramycin resistance methylase, 16S rRNA:m1A1408 methyltransferase, KamB, NpmA, 16S rRNA m1A1408 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (adenine1408-N1)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (adenine1618-N6)-methyltransferase (EC 2.1.1.181, rRNA large subunit methyltransferase F, YbiN protein, rlmF (gene), m6A1618 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine1618-N6)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (adenine2085-N6)-dimethyltransferase (EC 2.1.1.184, ErmC' methyltransferase, ermC methylase, ermC 23S rRNA methyltransferase, rRNA:m6A methyltransferase ErmC', ErmC', rRNA methyltransferase ErmC' ) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2085-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (guanosine2251-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanosine2251-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (guanine745-N1)-methyltransferase (EC 2.1.1.187, Rlma(I), Rlma1, 23S rRNA m1G745 methyltransferase, YebH, RlmAI methyltransferase, ribosomal RNA(m1G)-methylase, rRNA(m1G)methylase, RrmA, 23S rRNA:m1G745 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine745-N1)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (guanine748-N1)-methyltransferase (EC 2.1.1.188, Rlma(II), Rlma2, 23S rRNA m1G748 methyltransferase, RlmaII, Rlma II, tylosin-resistance methyltransferase RlmA(II), TlrB, rRNA large subunit methyltransferase II) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine748-N1)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (uracil747-C5)-methyltransferase (EC 2.1.1.189, YbjF, RumB, RNA uridine methyltransferase B) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uracil747-C5)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (cytosine1962-C5)-methyltransferase (EC 2.1.1.191, RlmI, rRNA large subunit methyltransferase I, YccW) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (cytosine1962-C5)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (adenine2503-C2,C8)-dimethyltransferase (EC 2.1.1.194, Cfr, Cfr methyltransferase, Cfr rRNA methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2503-C2,C8)-dimethyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (guanine2535-N1)-methyltransferase (EC 2.1.1.209, AviRa) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2535-N1)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (adenine2503-C8)-methyltransferase (EC 2.1.1.224, Cfr (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2503-C8)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (cytidine1920-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (cytidine1920-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction
16S rRNA (cytidine1409-2'-O)-methyltransferase (EC 2.1.1.227, TlyA) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (cytidine1409-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (adenosine1067-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenosine1067-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction
23S rRNA (guanine2069-N7)-methyltransferase (EC 2.1.1.264, rlmK (gene), 23S rRNA m7G2069 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2069-N7)-methyltransferase. This enzyme catalyses the following chemical reaction