Anterior gradient protein 2 homolog (AGR-2), also known as secreted cement gland protein XAG-2 homolog, is a protein that in humans is encoded by the AGR2 gene. Anterior gradient homolog 2 was originally discovered in Xenopus laevis . [5] In Xenopus AGR2 plays a role in cement gland differentiation, [6] but in human cancer cell lines high levels of AGR2 correlate with downregulation of the p53 response, [7] cell migration, and cell transformation. [8] However, there have been other observations that AGR2 can repress growth and proliferation. [9]
The Xenopus laevis anterior gradient genes - XAG-1, XAG-2, and XAG-3 - were discovered through dissection of different-aged embryos. [10] They become expressed in the anterior region of the dorsal ectoderm in late gastrula embryos. [10] [11] XAG-2 expression gathers at the anterior region of the dorsal ectoderm, and this region corresponds to the cement gland anlage. [12] Many other homologous proteins have been discovered afterwards in Xenopus.
AGR2 is the human homolog of XAG-2. It is expressed strongly in tissues that secrete mucus or function as endocrine organs, including the lungs, stomach, colon, prostate and small intestine. [13] [14] Its protein expression has been shown to be regulated by both androgens and estrogens. [9] [15]
AGR2 is a protein disulfide isomerase, with a single CXXS active domain motif for oxidation and reduction reactions. [16] [17] AGR2 forms mixed disulfides in substrates, such as intestinal mucin. AGR2 interacts with Mucin 2 through its thioredoxin-like domain forming a heterodisulfide bond with cysteine residues in MUC2. [18] AGR2 is suggested to play a role in protein folding, and it has a KTEL C-terminal motif similar to KDEL and KVEL endoplasmic reticulum retention sequences. [19]
Agr2 is located on chromosome 7p21, a region that has frequent genetic alterations. [20] It was first identified in estrogen receptor-positive breast cancer cells. [14] Later studies showed elevated levels of AGR2 in adenocarcinomas of the esophagus, pancreas, and prostate. In Barrett's esophagus, Agr2 expression is elevated by over 70 times compared to normal esophageal epithelia. [21] Thus, this protein alone is enough to distinguish Barrett's esophagus, which is linked to esophageal adenocarcinoma, from a normal esophagus. [22]
Varying AGR2 levels exist in different cancers. In breast cancer, high AGR2 expression is correlated with low survival rate. [23] AGR2 levels are elevated in the preneoplastic tissue Barrett's oesophagus. AGR2 is also associated with prostate cancer, though lower levels are associated with higher Gleason grades. [24]
In contrast to upregulation of AGR2 in various cancers, downregulation of AGR2 is linked with inflammatory bowel disease and increases in the risk of Crohn's disease and ulcerative colitis. This implies the importance of AGR2 in maintaining epithelial barrier function, which is supported by FOXA1 and FOXA2 molecules (transcription factors for epithelial goblet cells) which can activate the AGR2 promoter. [25]
In breast cancer, AGR2 and estrogen (ER) expression are positively correlated. Approximately 70% of breast cancer patients have breast cancer cells that heavily express ER and progesterone receptors (PgR). These patients are normally treated with endocrine therapy. Tamoxifen, which blocks the binding of estradiol to its receptor, is the standard treatment for ER-positive breast cancer. However, about one third of patients do not respond to this therapy, [26] and increased AGR2 may be one reason.
There is a positive correlation for a higher level of AGR2 expression with poor therapeutic results in ERα-positive breast cancer patients. [27] [28] Agr2 mRNA expression is elevated in in vitro and in vivo studies responding to tamoxifen adjuvant therapy, so AGR2 is likely provides an agonistic effect on tamoxifen. [27] [29] Therefore, AGR2 is a possible predictive biomarker when selecting patients with ER-positive breast cancer to participate this therapy. [30] Although Agr2 mRNA levels are correlated with the tamoxifen therapy response, AGR2 protein levels have yet to be statistically associated with the therapy. A combinatorial therapy using the anastrozole and fulvestrant has been shown to prevent binding of the ER to the Agr2 promoter, and there has been improved prognosis in the patients receiving it, possibly because AGR2 expression in the tumors have been reduced. [31] [ unreliable medical source ]
What AGR2 does in cancers is poorly understood. In breast cancer, HSP90 is a molecular chaperone expressed in tumor cells when there exists an excess of unfolded protein, and its co-chaperone has been reported to induce expression of AGR2, [32] [33] so AGR2 may be used by the endoplasmic reticulum to assist with protein folding to alleviate proteotoxic stress. AGR2 may help regulate the protein and mRNA levels in a cell overall as well. During late pregnancy and lactation, AGR2 levels peak when milk proteins are produced, and mammary-specific Agr2 knockout mice had downregulated milk protein mRNA expression. [34]
AGR2 is expressed in relatively high levels for prostate cancer patients. Urine sediment tests determined Agr2 transcript levels to be elevated. [9] AGR2 expression was increased in metastatic prostate cancer cells cultured in a bone marrow microenvironment, where intense levels of Agr2 mRNA were detected, suggesting AGR2 is required for bone metastasis of prostate cancer cells. [35] AGR2 transcript levels were lower in metastatic lesions compared to the primary tumor, however. [24] A greater chance of prostate cancer recurrence is linked to relatively lower levels of AGR2. [24]
AGR2 depletion through gene knockdown was shown to result in accumulation of prostate cancer cell lines at the G0/G1 phase of the cell cycle, while forced expression of AGR led to an increase in cell proliferation. [36] AGR2 was determined to be involved in cell adhesion. Agr2-silenced prostate cancer cells had a large decrease in association with fibronectin, lost expression of integrin, and reduced tumor cell migration. [35] In addition to these studies, AGR2 was among a set of genes consistently associated with prostate tumour visibility on MRI in a bioinformatic analysis, the analysis found that more visible tumours harboured more aggressive genetic characteristics. [37] The study also found genes involved with cell-ECM interactions to be altered in aggressive MRI-visible tumours, [37] potentially reflecting AGR2's association with cellular adhesion ans integrin signalling. [35]
AGR2 mRNA was discovered to be increased in precancerous lesions and neoplastic cells of pancreatic tumors and cancer cell lines. [38] Transient silencing of AGR2 by small interfering RNA and short hairpin RNA significantly reduces cell proliferation and invasion while increasing the effectiveness of gemcitabine treatment in pancreatic cancer cell lines in vitro, [38] [39] indicating that AGR2 can help pancreatic cancer cells survive and protect tumors from chemotherapeutic treatments for pancreatic cancer. This is critical because pancreatic cancer is well recognized as being highly resistant to therapeutics, and five-year survival rates for pancreatic cancer are extremely low.
AGR2 protein has been demonstrated to interact with C4.4A and DAG-1 proteins which are associated with metastasis formation since these transmembrane proteins are involved in cell and matrix interactions between cancer and normal cells. [40] AGR2 is able to suppress p53 activity by preventing phosphorylation after DNA damage. [7] AGR2 has been shown to bind to Reptin, a tumor repressor, in the nucleus. [41]
Adenocarcinoma is a type of cancerous tumor that can occur in several parts of the body. It is defined as neoplasia of epithelial tissue that has glandular origin, glandular characteristics, or both. Adenocarcinomas are part of the larger grouping of carcinomas, but are also sometimes called by more precise terms omitting the word, where these exist. Thus invasive ductal carcinoma, the most common form of breast cancer, is adenocarcinoma but does not use the term in its name—however, esophageal adenocarcinoma does to distinguish it from the other common type of esophageal cancer, esophageal squamous cell carcinoma. Several of the most common forms of cancer are adenocarcinomas, and the various sorts of adenocarcinoma vary greatly in all their aspects, so that few useful generalizations can be made about them.
Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.
Receptor tyrosine-protein kinase erbB-2 is a protein that in humans is encoded by the ERBB2 gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently referred to as HER2 or CD340.
T-box transcription factor T, also known as Brachyury protein, is encoded for in humans by the TBXT gene. Brachyury functions as a transcription factor within the T-box family of genes. Brachyury homologs have been found in all bilaterian animals that have been screened, as well as the freshwater cnidarian Hydra.
Zbtb7, whose protein product is also known as Pokemon, is a gene that functions as a regulator of cellular growth and a proto oncogene.
Glypicans constitute one of the two major families of heparan sulfate proteoglycans, with the other major family being syndecans. Six glypicans have been identified in mammals, and are referred to as GPC1 through GPC6. In Drosophila two glypicans have been identified, and these are referred to as dally and dally-like. One glypican has been identified in C. elegans. Glypicans seem to play a vital role in developmental morphogenesis, and have been suggested as regulators for the Wnt and Hedgehog cell signaling pathways. They have additionally been suggested as regulators for fibroblast growth factor and bone morphogenic protein signaling.
G protein-coupled estrogen receptor 1 (GPER), also known as G protein-coupled receptor 30 (GPR30), is a protein that in humans is encoded by the GPER gene. GPER binds to and is activated by the female sex hormone estradiol and is responsible for some of the rapid effects that estradiol has on cells.
Cysteine-rich angiogenic inducer 61 (CYR61) or CCN family member 1 (CCN1), is a matricellular protein that in humans is encoded by the CYR61 gene.
Mucin-4 (MUC-4) is a mucin protein that in humans is encoded by the MUC4 gene. Like other mucins, MUC-4 is a high-molecular weight glycoprotein.
FXYD domain-containing ion transport regulator 3 is a protein that in humans is encoded by the FXYD3 gene.
Anterior gradient protein 3 homolog is a protein that in humans is encoded by the AGR3 gene.
Somatic evolution is the accumulation of mutations and epimutations in somatic cells during a lifetime, and the effects of those mutations and epimutations on the fitness of those cells. This evolutionary process has first been shown by the studies of Bert Vogelstein in colon cancer. Somatic evolution is important in the process of aging as well as the development of some diseases, including cancer.
Forkhead box protein A1 (FOXA1), also known as hepatocyte nuclear factor 3-alpha (HNF-3A), is a protein that in humans is encoded by the FOXA1 gene.
In molecular biology miR-205 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. They are involved in numerous cellular processes, including development, proliferation, and apoptosis. Currently, it is believed that miRNAs elicit their effect by silencing the expression of target genes.
ZNF703 is a gene which has been linked with the development of breast cancers. ZNF703 is contained within the NET/N1z family responsible for regulation of transcription essential for developmental growth especially in the hindbrain. Normal functions performed by ZNF703 include adhesion, movement and proliferation of cells. ZNF703 directly accumulates histone deacetylases at gene promoter regions but does not bind to functional DNA.
Field cancerization or field effect is a biological process in which large areas of cells at a tissue surface or within an organ are affected by carcinogenic alterations. The process arises from exposure to an injurious environment, often over a lengthy period.
This is a historical timeline of the development and progress of cancer treatments, which includes time of discovery, progress, and approval of the treatments.
A cancer-associated fibroblast (CAF) is a cell type within the tumor microenvironment that promotes tumorigenic features by initiating the remodelling of the extracellular matrix or by secreting cytokines. CAFs are a complex and abundant cell type within the tumour microenvironment; the number cannot decrease, as they are unable to undergo apoptosis.
CKLF-like MARVEL transmembrane domain-containing protein 3, also termed chemokine-like factor superfamily 3, is a member of the CKLF-like MARVEL transmembrane domain-containing family of proteins. In humans, CMTM2 protein is encoded by the CMTM3 gene located in band 22.1 on the long arm of chromosome 16. This protein is expressed in a wide range of tissues, including fetal tissues. It is highly expressed in the male reproductive system, particularly testicular tissues and may play a role in the development of this tissue. It is also highly expressed in the immune system including circulating blood cells, i.e. B lymphocytes, CD4+ T lymphocytes, and monocytes. However, CMTM3 protein is weakly expressed or unexpressed in the malignant tissues of several types of cancers. In many but not all of theses cancers, this decreased or lack of expression appears due to methylation of the GpC islands in the promoter region, and thereby the silencing, of the CMTM3 gene.
CKLF-like MARVEL transmembrane domain-containing 5 (CMTM5), previously termed chemokine-like factor superfamily 5, designates any one of the six protein isoforms encoded by six different alternative splices of its gene, CMTM5; CMTM5-v1 is the most studied of these isoforms. The CMTM5 gene is located in band 11.2 on the long arm of chromosome 14.