ALDH1A2

Last updated
ALDH1A2
Protein ALDH1A2 PDB 1bi9.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ALDH1A2 , RALDH(II), RALDH2, RALDH2-T, aldehyde dehydrogenase 1 family member A2
External IDs OMIM: 603687 MGI: 107928 HomoloGene: 68368 GeneCards: ALDH1A2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_170697
NM_001206897
NM_003888
NM_170696

NM_009022

RefSeq (protein)

NP_001193826
NP_003879
NP_733797
NP_733798

NP_033048

Location (UCSC) Chr 15: 57.95 – 58.5 Mb Chr 9: 71.12 – 71.2 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
ALDH1A2 expressed from Aldehyde Dehydrogenase (ALDH) 1cw3.jpg
ALDH1A2 expressed from Aldehyde Dehydrogenase (ALDH)

Aldehyde dehydrogenase 1 family, member A2, also known as ALDH1A2 or retinaldehyde dehydrogenase 2 (RALDH2), is an enzyme that in humans is encoded by the ALDH1A2 gene. [5] [6]

Contents

This protein belongs to the aldehyde dehydrogenase family of proteins. The product of this gene is an enzyme that catalyzes the synthesis of retinoic acid (RA) from retinaldehyde. Retinoic acid, the active derivative of vitamin A (retinol), is a paracrine hormone signaling molecule that functions in developing and adult tissues. [7] The studies of a similar mouse gene suggest that this enzyme and the cytochrome CYP26A1, concurrently establish local embryonic retinoic acid levels that facilitate posterior organ development and prevent spina bifida. Three transcript variants encoding distinct isoforms have been identified for this gene. [6]

Clinical significance

Involvement in T-ALL

Cancer can be caused by both internal factors including genetic changes or environmental/acquired factors. Many forms of cancers have overexpressed aldehyde dehydrogenase (ALDH), specifically one of the ALDH family genes, ALDH1A2 [8] which has been abnormally expressed in more than half of instances of T-cell acute lymphoblastic leukemia (T-ALL). Its molecular nature and contribution to the pathophysiology of T-ALL remain largely not well understood. T-ALL is an acute leukemia that arises from immature T-cell precursors and is an aggressive form of cancer that primarily affects children but can also be found in adults. T-ALL has multiple genes encoding transcription factors including TAL1, TLX1, HOXA genes, TAL2, LYL1, LMO1, LMO2, and NKX3 though ALDH1A2 is one of the recognized downstream targets of TAL1. [9] which works by binding to the intronic regulatory element of the gene thereby inducing T-ALL specific isoform with enzymatic activity. TAL-1 positive T-ALL accounts for approximately 40-60% of all primary cases. According to researchers’ data, depletion of ALDH1A2 demonstrated reduced cell viability in T-cell lines and caused apoptosis. ALDH1A2 has a role in glycolysis and the TCA during which it affects multiple metabolic enzymes to promote ATP production though depletion of ALDH1A2 revealed increased levels of reactive oxygen species. However, overexpression of ALDH1A2 findings suggested that it can increase tumor onset and tumor penetrance. Overall, it has been noted per researchers' data and  findings that the ALDH1A2 can promote T-ALL cell metabolism due to direct activation by TAL-1 and promote leukemia cell survival and protect against intracellular stress by reducing the level of reactive oxygen species. [10]  

Potential suppressor in prostate cancer

Due to ADLDH1A2's involvement in the conversion of retinal to RA, researchers have keen on understanding its role in different pathologies. RA has pro-differentiation properties including promoting apoptosis, differential, and cell growth arrest. It was observed that the ALDH1A2 can be expressed in epithelia from normal prostate though not from prostate cancer. Upon bisulfite sequencing, it was found that the ALDH1A2 promoter region was hypermethylated in primary prostate tumors compared with normal prostate specimens after DU145 cells which express retinoid receptors were cultured in the presence of either ATRA or 5-aza-DC. 5-Aza-DC can induce expression of ALDH1A2. [11] Findings suggested that ALDH1A2 is a candidate tumor suppressor in prostate cancer and this provided further evidence of retinoids in the treatment or prevention of prostate cancer.

Congenital heart disease

ALDH1A1 is also a key step in cardiac development due to its involvement in the RA signaling pathway. RA regulates various cellular behaviors during early development and adult homeostasis. In particular, the vertebrate heart is affected by variations in RA signaling which can produce cardiac and vascular malformation. [12] It is vital to note that RA cannot be synthesized de novo due it being a carotenoid and thus it must be acquired by preformed animal-derived precursors such as retinol or retinyl esters. One of the metabolic routes used to produce RA in humans is by synthesizing retinol after it has been oxidized to retinaldehyde then to RA through various enzymes including alcohol dehydrogenases and aldehyde dehydrogenases. The second step is an irreversible conversion from retinaldehyde to RA which is converted by ALDH1A2. [13] A study was conducted by researchers on the screening of patients with congenital heart diseases for genetic variation at the ALDH1A2 locus through bi-directional sequencing. Congenital heart disease (CHD)  was initially thought to be multifactorial and polygenic disease; however, recent literature of familial forms of CHD such as hypertrophic cardiomyopathy, atrial septal defect, ventricular septal defect, and tetralogy of fallot are being explained by haploinsufficiency of genes including sarcomeric proteins, extracellular matrix proteins, transcription factors, and ionic channels. [14] Through this study's methods and research, it was found that ALDH1A2 genetic variation is present in tetralogy of fallot patients meaning that it can play a potential role in human cases of CHD; however, there is no clear link on whether the variation at the ALDH1A2 locus is a significant modified of the risk for CHD.

Glioblastoma

In the ALDH1 family of genes, ALDH1A2 is one of the most familiar enzymes represented in human tissue alongside ALDH1A1 and ALDH1A3; however each have differing tissue distributions but still catalyze the synthesis of RA. RA has also been employed as a therapeutic agent in the treatment of glioblastoma (GBM) though with limitations. [15] Glioblastoma is an aggressive and malignant brain tumor and due to its heterogeneity, it is more difficult to treat. In another study published in 2021, the expression of ALDH1A2 in the GBM microenvironment was conducted. The study's results demonstrated that the M2 glioblastoma associated macrophages (GBM) highly express ALDH1A2 when compared to other ALDH family proteins and that the higher expression was increased with tumor recurrence at the gene and protein levels. The effect of ALDH1A2 and the effect RA on GBM tumor cells still requires further understanding and knowledge though researchers were able to gather that ALDH1A2 may promote a progressive phenotype of GBM.

Potential treatment of osteoarthritis

In addition, ALDH1A2, which is a key enzyme for synthesis of all-trans retinoic acid (atRA) that is associated with severe hand osteoarthritis. [16] Osteoarthritis (OA) is a degenerative joint disease which can have symptoms including weakness, stiffness in joints, and limited range that can significantly impact many individuals as they age though conventional disease-modifying treatments are not used for treatment. OA treatment is primarily focused on decreasing joint stress through exercise, pain medications, and using assistive devices such as canes. Zhu and her colleagues further explored in a research study how the variants in the ALDH1A2 gene which synthesizes atRA can be used with those with severe hand OA. The relationship between ALDH1A2 mRNA and inflammatory genes was viewed that revealed a reciprocal relationship. Many believe that the primary perpetuating factor of OA is from mechanoflammation which the research study describes as “articular cartilage injury that becomes upregulated by similar inflammatory genes.” [16]   The study used a retinoic acid metabolism blocking agent (RAMBA) called talarozole which works by reducing inflammation and cartilage injury by a peroxisome proliferator activated receptor gamma and the results demonstrated that RAMBAs may be a potential therapeutic option for the treatment of OA as a disease modifying drug by suppressing mechanoflammation in the articular cartilage.

 

Related Research Articles

<span class="mw-page-title-main">Vitamin A</span> Essential nutrient

Vitamin A is a fat-soluble vitamin and an essential nutrient for animals. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal, retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene. Vitamin A has multiple functions: it is essential for embryo development and growth, for maintenance of the immune system, and for vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light and color vision.

A dehydrogenase is an enzyme belonging to the group of oxidoreductases that oxidizes a substrate by reducing an electron acceptor, usually NAD+/NADP+ or a flavin coenzyme such as FAD or FMN. Like all catalysts, they catalyze reverse as well as forward reactions, and in some cases this has physiological significance: for example, alcohol dehydrogenase catalyzes the oxidation of ethanol to acetaldehyde in animals, but in yeast it catalyzes the production of ethanol from acetaldehyde.

<span class="mw-page-title-main">Tumor hypoxia</span> Situation where tumor cells have been deprived of oxygen

Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic microenvironements in solid tumors are a result of available oxygen being consumed within 70 to 150 μm of tumour vasculature by rapidly proliferating tumor cells thus limiting the amount of oxygen available to diffuse further into the tumor tissue. In order to support continuous growth and proliferation in challenging hypoxic environments, cancer cells are found to alter their metabolism. Furthermore, hypoxia is known to change cell behavior and is associated with extracellular matrix remodeling and increased migratory and metastatic behavior.

<span class="mw-page-title-main">Glioblastoma</span> Aggressive type of brain cancer

Glioblastoma, previously known as glioblastoma multiforme (GBM), is the most aggressive and most common type of cancer that originates in the brain, and has very poor prognosis for survival. Initial signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality changes, nausea, and symptoms similar to those of a stroke. Symptoms often worsen rapidly and may progress to unconsciousness.

<span class="mw-page-title-main">Isocitrate dehydrogenase</span> Class of enzymes

Isocitrate dehydrogenase (IDH) (EC 1.1.1.42) and (EC 1.1.1.41) is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome.

<span class="mw-page-title-main">Retinoic acid</span> Metabolite of vitamin A

Retinoic acid (used simplified here for all-trans-retinoic acid) is a metabolite of vitamin A1 (all-trans-retinol) that mediates the functions of vitamin A1 required for growth and development. All-trans-retinoic acid is required in chordate animals, which includes all higher animals from fish to humans. During early embryonic development, all-trans-retinoic acid generated in a specific region of the embryo helps determine position along the embryonic anterior/posterior axis by serving as an intercellular signaling molecule that guides development of the posterior portion of the embryo. It acts through Hox genes, which ultimately control anterior/posterior patterning in early developmental stages.

<span class="mw-page-title-main">Tumor metabolome</span>

The study of the tumor metabolism, also known as tumor metabolome describes the different characteristic metabolic changes in tumor cells. The characteristic attributes of the tumor metabolome are high glycolytic enzyme activities, the expression of the pyruvate kinase isoenzyme type M2, increased channeling of glucose carbons into synthetic processes, such as nucleic acid, amino acid and phospholipid synthesis, a high rate of pyrimidine and purine de novo synthesis, a low ratio of Adenosine triphosphate and Guanosine triphosphate to Cytidine triphosphate and Uridine triphosphate, low Adenosine monophosphate levels, high glutaminolytic capacities, release of immunosuppressive substances and dependency on methionine.

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

In enzymology, a retinol dehydrogenase (RDH) (EC 1.1.1.105) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Retinoic acid receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor alpha (RAR-α), also known as NR1B1 is a nuclear receptor that in humans is encoded by the RARA gene.

<span class="mw-page-title-main">Retinal dehydrogenase</span>

In enzymology, a retinal dehydrogenase, also known as retinaldehyde dehydrogenase (RALDH), catalyzes the chemical reaction converting retinal to retinoic acid. This enzyme belongs to the family of oxidoreductases, specifically the class acting on aldehyde or oxo- donor groups with NAD+ or NADP+ as acceptor groups, the systematic name being retinal:NAD+ oxidoreductase. This enzyme participates in retinol metabolism. The general scheme for the reaction catalyzed by this enzyme is:

<span class="mw-page-title-main">GATA3</span> Protein-coding gene in the species Homo sapiens

GATA3 is a transcription factor that in humans is encoded by the GATA3 gene. Studies in animal models and humans indicate that it controls the expression of a wide range of biologically and clinically important genes.

<span class="mw-page-title-main">STIL</span> Protein-coding gene in the species Homo sapiens

SCL-interrupting locus protein is a protein that in humans is encoded by the STIL gene. STIL is present in many different cell types and is essential for centriole biogenesis. This gene encodes a cytoplasmic protein implicated in regulation of the mitotic spindle checkpoint, a regulatory pathway that monitors chromosome segregation during cell division to ensure the proper distribution of chromosomes to daughter cells. The protein is phosphorylated in mitosis and in response to activation of the spindle checkpoint, and disappears when cells transition to G1 phase. It interacts with a mitotic regulator, and its expression is required to efficiently activate the spindle checkpoint.

<span class="mw-page-title-main">ASAH1</span> Protein-coding gene in the species Homo sapiens

The ASAH1 gene encodes in humans the acid ceramidase enzyme.

<span class="mw-page-title-main">CYP26A1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 26A1 is a protein that in humans is encoded by the CYP26A1 gene.

<span class="mw-page-title-main">LMO1</span> Protein-coding gene in the species Homo sapiens

Rhombotin-1 is a protein that in humans is encoded by the LMO1 gene.

<span class="mw-page-title-main">CYP26C1</span> Protein-coding gene in the species Homo sapiens

CYP26C1 is a protein which in humans is encoded by the CYP26C1gene.

<span class="mw-page-title-main">ALDH1A3</span> Protein-coding gene in the species Homo sapiens

Aldehyde dehydrogenase 1 family, member A3, also known as ALDH1A3 or retinaldehyde dehydrogenase 3 (RALDH3), is an enzyme that in humans is encoded by the ALDH1A3 gene,

<span class="mw-page-title-main">ALDH1A1</span> Protein-coding gene in the species Homo sapiens

Aldehyde dehydrogenase 1 family, member A1, also known as ALDH1A1 or retinaldehyde dehydrogenase 1 (RALDH1), is an enzyme that is encoded by the ALDH1A1 gene.

<span class="mw-page-title-main">RDH13</span> Protein-coding gene in the species Homo sapiens

Retinol dehydrogenase 13 (all-trans/9-cis) is a protein that in humans is encoded by the RDH13 gene. This gene encodes a mitochondrial short-chain dehydrogenase/reductase, which catalyzes the reduction and oxidation of retinoids. The encoded enzyme may function in retinoic acid production and may also protect the mitochondria against oxidative stress. Alternatively spliced transcript variants have been described.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000128918 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000013584 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ono Y, Fukuhara N, Yoshie O (December 1998). "TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3". Molecular and Cellular Biology. 18 (12): 6939–6950. doi:10.1128/MCB.18.12.6939. PMC   109277 . PMID   9819382.
  6. 1 2 "Entrez Gene: ALDH1A2 aldehyde dehydrogenase 1 family, member A2".
  7. Duester G (September 2008). "Retinoic acid synthesis and signaling during early organogenesis". Cell. 134 (6): 921–931. doi:10.1016/j.cell.2008.09.002. PMC   2632951 . PMID   18805086.
  8. Zhang C, Amanda S, Wang C, King Tan T, Zulfaqar Ali M, Zhong Leong W, et al. (June 2021). "Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia". Haematologica. 106 (6): 1545–1558. doi:10.3324/haematol.2019.245639. PMC   8168519 . PMID   32414855.
  9. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. (August 2017). "The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia". Nature Genetics. 49 (8): 1211–1218. doi:10.1038/ng.3909. PMC   5535770 . PMID   28671688.
  10. Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, et al. (April 2016). "AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival". Cell Metabolism. 23 (4): 649–662. doi:10.1016/j.cmet.2016.03.008. PMC   4832577 . PMID   27076078.
  11. Kim H, Lapointe J, Kaygusuz G, Ong DE, Li C, van de Rijn M, et al. (September 2005). "The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer". Cancer Research. 65 (18): 8118–8124. doi:10.1158/0008-5472.CAN-04-4562. PMID   16166285.
  12. Pavan M, Ruiz VF, Silva FA, Sobreira TJ, Cravo RM, Vasconcelos M, et al. (November 2009). "ALDH1A2 (RALDH2) genetic variation in human congenital heart disease". BMC Medical Genetics. 10: 113. doi: 10.1186/1471-2350-10-113 . PMC   2779186 . PMID   19886994.
  13. Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Dräger UC, Rosenthal N (July 1998). "Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart". Developmental Biology. 199 (1): 55–71. doi: 10.1006/dbio.1998.8911 . PMID   9676192.
  14. Blanchard EM, Iizuka K, Christe M, Conner DA, Geisterfer-Lowrance A, Schoen FJ, et al. (December 1997). "Targeted ablation of the murine alpha-tropomyosin gene". Circulation Research. 81 (6): 1005–1010. doi:10.1161/01.res.81.6.1005. PMID   9400381.
  15. Sanders S, Herpai DM, Rodriguez A, Huang Y, Chou J, Hsu FC, et al. (September 2021). "The Presence and Potential Role of ALDH1A2 in the Glioblastoma Microenvironment". Cells. 10 (9): 2485. doi: 10.3390/cells10092485 . PMC   8468822 . PMID   34572134.
  16. 1 2 Zhu L, Kamalathevan P, Koneva LA, Zarebska JM, Chanalaris A, Ismail H, et al. (December 2022). "Variants in ALDH1A2 reveal an anti-inflammatory role for retinoic acid and a new class of disease-modifying drugs in osteoarthritis". Science Translational Medicine. 14 (676): eabm4054. doi:10.1126/scitranslmed.abm4054. hdl: 10044/1/101589 . PMID   36542696. S2CID   237518470.

Further reading