APOBEC3H

Last updated
APOBEC3H
Identifiers
Aliases APOBEC3H , A3H, ARP-10, ARP10, apolipoprotein B mRNA editing enzyme catalytic subunit 3H
External IDs OMIM: 610976 HomoloGene: 52306 GeneCards: APOBEC3H
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001166002
NM_001166003
NM_001166004
NM_181773

n/a

RefSeq (protein)

NP_001159474
NP_001159475
NP_001159476
NP_861438

n/a

Location (UCSC) Chr 22: 39.1 – 39.1 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

DNA dC->dU-editing enzyme APOBEC-3H, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3H or APOBEC-related protein 10, is a protein that in humans is encoded by the APOBEC3H gene. [3]

Contents

Function

This gene encodes a member of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of proteins. The encoded protein is a cytidine deaminase that has antiretroviral activity by generating lethal hypermutations in viral genomes. Polymorphisms and alternative splicing in this gene influence its antiretroviral activity and are associated with increased resistance to human immunodeficiency virus type 1 infection in certain populations. There are only one to two members of this family of genes in nonprimate mammals but at least seven members in primates. APOBEC3H is an antiviral effector. In Old world monkeys APOBEC3H has efficient antiviral activity against primate lentiviruses and it is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. The typical human APOBEC3H gene is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. [4] Importantly, different people have different strengths and potencies of APOBEC3H. People with version of the gene for APOBEC3H which produce stable variations of the protein can successfully limit HIV-1's ability to replicate. [5]

Related Research Articles

<span class="mw-page-title-main">Defective interfering particle</span>

Defective interfering particles (DIPs), also known as defective interfering viruses, are spontaneously generated virus mutants in which a critical portion of the particle's genome has been lost due to defective replication or non-homologous recombination. The mechanism of their formation is presumed to be as a result of template-switching during replication of the viral genome, although non-replicative mechanisms involving direct ligation of genomic RNA fragments have also been proposed. DIPs are derived from and associated with their parent virus, and particles are classed as DIPs if they are rendered non-infectious due to at least one essential gene of the virus being lost or severely damaged as a result of the defection. A DIP can usually still penetrate host cells, but requires another fully functional virus particle to co-infect a cell with it, in order to provide the lost factors.

<span class="mw-page-title-main">Viral infectivity factor</span> Protein found in lentiviruses

Viral infectivity factor, or Vif, is an accessory protein found in HIV and other lentiviruses. Its role is to disrupt the antiviral activity of the human enzyme APOBEC by targeting it for ubiquitination and cellular degradation. APOBEC is a cytidine deaminase enzyme that mutates viral nucleic acids.

<span class="mw-page-title-main">APOBEC3G</span> Protein and coding gene in humans

APOBEC3G is a human enzyme encoded by the APOBEC3G gene that belongs to the APOBEC superfamily of proteins. This family of proteins has been suggested to play an important role in innate anti-viral immunity. APOBEC3G belongs to the family of cytidine deaminases that catalyze the deamination of cytidine to uridine in the single stranded DNA substrate. The C-terminal domain of A3G renders catalytic activity, several NMR and crystal structures explain the substrate specificity and catalytic activity.

Missense mRNA is a messenger RNA bearing one or more mutated codons that yield polypeptides with an amino acid sequence different from the wild-type or naturally occurring polypeptide. Missense mRNA molecules are created when template DNA strands or the mRNA strands themselves undergo a missense mutation in which a protein coding sequence is mutated and an altered amino acid sequence is coded for.

<span class="mw-page-title-main">ADAR</span> Mammalian protein found in Homo sapiens

The double-stranded RNA-specific adenosine deaminase enzyme family are encoded by the ADAR family genes. ADAR stands for adenosine deaminase acting on RNA. This article focuses on the ADAR proteins; This article details the evolutionary history, structure, function, mechanisms and importance of all proteins within this family.

<span class="mw-page-title-main">PSME4</span> Protein found in humans

Proteasome activator complex subunit 4 is a protein that in humans is encoded by the PSME4 gene.

<span class="mw-page-title-main">APOBEC1</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 also known as C->U-editing enzyme APOBEC-1 is a protein that in humans is encoded by the APOBEC1 gene.

<span class="mw-page-title-main">APOBEC3F</span> Protein-coding gene in the species Homo sapiens

DNA dC->dU-editing enzyme APOBEC-3F is a protein that in humans is encoded by the APOBEC3F gene.

<span class="mw-page-title-main">A1CF</span> Protein-coding gene in the species Homo sapiens

APOBEC1 complementation factor is a protein that in humans is encoded by the A1CF gene.

<span class="mw-page-title-main">APOBEC3C</span> Protein-coding gene in humans

DNA dC->dU-editing enzyme APOBEC-3C is a protein that in humans is encoded by the APOBEC3C gene.

<span class="mw-page-title-main">APOBEC2</span> Protein-coding gene in the species Homo sapiens

Probable C->U-editing enzyme APOBEC-2 is a protein that in humans is encoded by the APOBEC2 gene.

<span class="mw-page-title-main">APOBEC3A</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A, also known as APOBEC3A, or A3A is a gene of the APOBEC3 family found in humans, non-human primates, and some other mammals. It is a single-domain DNA cytidine deaminase with antiviral effects. While other members of the family such as APOBEC3G are believed to act by editing ssDNA by removing an amino group from cytosine in DNA, introducing a cytosine to uracil change which can ultimately lead to a cytosine to thymine mutation, one study suggests that APOBEC3A can inhibit parvoviruses by another mechanism. The cellular function of APOBEC3A is likely to be the destruction of foreign DNA through extensive deamination of cytosine.Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. "APOBEC3 proteins mediate the clearance of foreign DNA from human cells". Nature Structural & Molecular Biology. 17 (2): 222–9. doi:10.1038/nsmb.1744. PMC 2921484. PMID 20062055.

<span class="mw-page-title-main">APOBEC3B</span> Protein-coding gene in the species Homo sapiens

Probable DNA dC->dU-editing enzyme APOBEC-3B is a protein that in humans is encoded by the APOBEC3B gene.

<span class="mw-page-title-main">APOBEC3D</span> Protein-coding gene in the species Homo sapiens

Probable DNA dC->dU-editing enzyme APOBEC-3D is a protein that in humans is encoded by the APOBEC3D gene.

Intrinsic immunity refers to a set of cellular-based anti-viral defense mechanisms, notably genetically encoded proteins which specifically target eukaryotic retroviruses. Unlike adaptive and innate immunity effectors, intrinsic immune proteins are usually expressed at a constant level, allowing a viral infection to be halted quickly. Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell non-permissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors preexisting in certain cell types, although these factors can be further induced by virus infection. Intrinsic viral restriction factors recognize specific viral components, but unlike other pattern recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly.

<span class="mw-page-title-main">APOBEC</span> Enzyme involved in messenger RNA editing

APOBEC is a family of evolutionarily conserved cytidine deaminases.

<span class="mw-page-title-main">APOBEC4</span> Protein-coding gene in the species Homo sapiens

C->U-editing enzyme APOBEC-4, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 4, is a protein that in humans is encoded by the APOBEC4 gene. It is primarily expressed in testis and found in mammals, chicken, but not fishes.

<span class="mw-page-title-main">Kataegis</span>

In molecular biology, kataegis describes a pattern of localized hypermutations identified in some cancer genomes, in which a large number of highly patterned basepair mutations occur in a small region of DNA. The mutational clusters are usually several hundred basepairs long, alternating between a long range of C→T substitutional pattern and a long range of G→A substitutional pattern. This suggests that kataegis is carried out on only one of the two template strands of DNA during replication. Compared to other cancer-related mutations, such as chromothripsis, kataegis is more commonly seen; it is not an accumulative process but likely happens during one cycle of replication.

Vpx is a virion-associated protein encoded by human immunodeficiency virus type 2 HIV-2 and most simian immunodeficiency virus (SIV) strains, but that is absent from HIV-1. It is similar in structure to the protein Vpr that is carried by SIV and HIV-2 as well as HIV-1. Vpx is one of five accessory proteins carried by lentiviruses that enhances viral replication by inhibiting host antiviral factors.

Viviana Simon is a Professor of Microbiology at the Icahn School of Medicine at Mount Sinai (ISMMS). She is a member of the ISMMS Global Health and Emerging Pathogens Institute. Her research considers viral-host interactions and the mode of action of retroviral restriction factors. During the COVID-19 pandemic, Simon developed an antibody test that can determine immunity to Coronavirus disease 2019.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000100298 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Entrez Gene: apolipoprotein B mRNA editing enzyme".
  4. OhAinle M, Kerns JA, Malik HS, Emerman M (April 2006). "Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H". Journal of Virology. 80 (8): 3853–62. doi:10.1128/JVI.80.8.3853-3862.2006. PMC   1440450 . PMID   16571802.
  5. Refsland EW, Hultquist JF, Luengas EM, Ikeda T, Shaban NM, Law EK, et al. (November 2014). "Natural polymorphisms in human APOBEC3H and HIV-1 Vif combine in primary T lymphocytes to affect viral G-to-A mutation levels and infectivity". PLOS Genetics. 10 (11): e1004761. doi: 10.1371/journal.pgen.1004761 . PMC   4238949 . PMID   25411794.

Further reading