Abbots Ripton rail accident | |
---|---|
Details | |
Date | 21 January 1876 |
Location | Abbots Ripton |
Country | United Kingdom |
Line | East Coast Main Line |
Operator | Great Northern Railway |
Incident type | Double collision |
Cause | Wrong-side failure (multiple) |
Statistics | |
Trains | 3 |
Deaths | 13 |
Injured | 59 (53 passengers and 6 crew members) |
The Abbots Ripton rail disaster occurred on 21 January 1876 at Abbots Ripton, then in the county of Huntingdonshire, England, on the Great Northern Railway main line, previously thought to be exemplary for railway safety. In the accident, the Special Scotch Express train from Edinburgh to London was involved in a collision, during a blizzard, with a coal train. An express travelling in the other direction then ran into the wreckage. The initial accident was caused by:
The accident (and the subsequent inquiry into it) [1] led to fundamental changes in British railway signalling practice.
A coal train preceding the Flying Scotsman on the main East Coast up (south-bound) line was normally scheduled to be shunted into a siding at Abbots Ripton to allow the much faster Flying Scotsman to pass. Because of a very bad snowstorm, both the coal train and the Flying Scotsman were running late and the signalman at Holme, the next station north of Abbots Ripton, judged that the coal train needed to go into sidings at Holme if it was not to delay the Flying Scotsman. He therefore set his signal levers to danger so as to stop the coal train, but it continued on the main line until it reached Abbots Ripton, where as expected the signalman waved it on to his box with a hand lamp, and directed it to shunt. The goods train had nearly completed shunting into the Abbots Ripton siding when the Scotch express ran into it at speed. The wreckage obstructed the down (northbound) line and a second collision occurred some minutes later when a northbound express to Leeds crashed into the wreckage. Thirteen passengers died in the collisions, and 53 passengers and 6 traincrew members were injured. Among the deaths was the eldest son of the prominent Irish-born actor-playwright Dion Boucicault. [2]
The Great Northern was operating on the block system, which was supposed to eliminate such accidents, so the accident caused considerable alarm. It was soon established that the main problem was with signals and snow:
The coal train had therefore seen nothing to make it stop at Holme, and the Flying Scotsman whilst catching up with it had run through a number of signals which were showing 'clear' although their levers had been set to 'danger'.
Abbots Ripton is about 4.5 miles (7.2 km) north of Huntingdon (and 12.8 miles (20.6 km) south of Peterborough) on the East Coast main line, which handled both fast passenger trains and slow goods (largely coal) traffic. North of Peterborough passenger and coal traffic took different routes. South of Peterborough, they shared the same route; this was twin track in 1876, but stations with 'shunting sidings' were provided at frequent intervals to avoid slow goods trains, typically travelling at 20 mph (32 km/h), obstructing fast trains such as the prestigious 'Scotch express', which averaged 45 mph (72 km/h) (hence its unofficial nickname 'The Flying Scotsman'), A slow train being caught up by a faster one would stop at such a station and reverse into the shunting siding, taking about four minutes to clear the main line. After the fast train had passed, the slow train would resume its journey. Abbots Ripton station had a shunting siding; for a south-bound ('up') train the previous siding was 5.8 miles (9.3 km) further north at Holme, 7 miles (11 km) south of Peterborough.
Traffic along the line was regulated by block working. Abbots Ripton and Holme had signal boxes and between them were two intermediate boxes. All controlled 'home' signals near the box and 'distant' signals about half a mile (c. 800 m (2,600 ft)) before the home signals. The line was thus divided into three blocks, each roughly 2 miles (3.2 kilometres) long; entry to each block was controlled by the signal box at the start of the block. [3] Shunting into the siding at Abbots Ripton took place in a fourth block. The 'home' signals at Abbots Ripton were interlocked with the siding points, so that whenever the points were open to the main line the Abbots Ripton home signal lever had to be at 'danger'.
All boxes could communicate with adjacent boxes by their block telegraph. Signals were normally kept at 'all clear' but were set to 'danger' to protect trains as follows. When a train entered a block by passing a home signal, the signalman would set the home signal to 'danger', thus preventing a following train entering the same block. The distant would also be set to 'danger'. Trains were required to stop at a home signal at 'danger', but were allowed to pass a distant signal at 'danger' as this merely warned an approaching driver to moderate his speed to be ready to stop the train at the home signal. Both signals would be returned to 'all clear' when the next box telegraphed 'line clear'. Normally, as soon as a train was past a box's home signal, the signalman would telegraph 'line clear' to the preceding box. During foggy or snowy weather, however, when a train stopped at a station 'line clear' was not sent until the train had restarted, or been shunted into a siding. [4] In good weather therefore a goods train being shunted into a siding at Abbots Ripton should have been protected against another train running into it by the Abbots Ripton 'home' and 'distant' signals; in falling snow, the home and distant signals of the previous box should have given further protection and the fast train should always have been at least one full block away.
Signal boxes serving stations/sidings had, as well as the block telegraph, 'speaking telegraph' instruments. These were not telephones, but Morse code senders, used for messages (for example how late a train was running).
The signals used on the Great Northern to work the block system were lower quadrant semaphores. [note 1] A lever in the signal box was connected by a wire (under tension, and passing over intermediate pulleys) to a counterweighted arm on the signal. To set a signal to all clear, the signalman pulled the appropriate lever in his signal box; this moved the arm down (which was pivoted in a slot in the signal post), against the pull of the counterweight, "to a vertical position in the post". [5] When the lever was moved to set the signal to danger, this did not positively drive the signal to “danger” but paid out slack in the wire and allowed the counterweight to take the arm to a horizontal position. [note 2]
Since by day the signal arms were clearly visible from the signal box from which they were worked, the system had no repeater in the signal box to confirm a signal was actually showing the aspect corresponding to the lever position.
In emergency the signal could be set to ‘danger’ by cutting the wire; but a heavy weight lying on the wire would keep the signal at ‘all clear’ by effectively pulling on it: since the signals were normally set to ‘all clear’ any fault which stopped them being moved would almost certainly keep them at ‘all clear’ as well.
At night (or in poor visibility in daytime) an oil lamp displayed a white light when the signal was at 'all clear'; when the signal arm moved to the horizontal “danger” position it brought a red lens in front of the light, so that a red light was then displayed to oncoming trains. In poor visibility, GNR regulations called for detonators to be laid if possible on the track at the home signal when this was set to danger; at stations where platelayers were available, this should also be done at the distant signals.
The express trains were made up of non-bogie non-corridor four- or six-wheel carriages. There were 13 on the Leeds express, giving a weight (including the engine and tender) of somewhat over 200 tons. At this period, other railways often had to resort to using more than one engine to maintain a high top speed; the Great Northern (favoured with one of the best engine classes of the period – the Stirling 8-foot singles) prided itself on not doing so. As with all the other railways, though, it had considerable difficulties in stopping the trains rapidly once they were at speed. To stop a train, the driver could shut off steam, get his fireman to apply a handbrake [note 3] on the tender and put the engine into reverse. He had no means of applying brakes to the rest of the train; indeed most of the carriages had no brakes. Two or three of the carriages were brake carriages with handbrakes, each with a guard who would apply them when (and if) he heard the driver "whistle for brakes". In trials carried out after the accident under favourable conditions this was shown to bring the train to rest within 800–1,150 yards (2,400–3,450 feet) when travelling at 40–45 mph (64–72 km/h). The Railway Inspectors considered that much shorter stopping distances would be possible if passenger trains were provided with continuous brakes operable by the driver, and had urged such systems be fitted. This had been resisted by the railway companies as unnecessary, unreliable, expensive and dangerous. [note 4]
On the night of the accident, the Scotch express had 10 passenger carriages. These were first- or second-class; as customary the train did not carry third-class passengers. Notable passengers included the Russian Ambassador, the deputy chairman [note 5] and another director [note 6] of the Great Northern, and a director (John Cleghorn, formerly company secretary) and the chief engineer (Thomas Elliot Harrison, a past president of the Institution of Civil Engineers) of the North Eastern Railway. [6] At the inquest, the coroner's summing up noted that it was a heavy responsibility to stop a train, but did not explicitly suggest the prestige of the Scotch express aggravated the responsibility.
On the afternoon of 21 January, the Peterborough-Huntingdon area was experiencing a very bad snow storm; more than one witness at the Inquiry said they had never known worse: "freezing blowing and snowing .. bad for seeing signals". [7] Crucially, the snow/sleet fell onto already cold ground and equipment, freezing on them. [note 7] [8]
The southbound coal train had left Peterborough about 18 minutes late, and therefore with about 12 minutes less lead on the Flying Scotsman than normal. It progressed steadily to Abbots Ripton where it stopped by the signalbox (at about 6.41) and on the instructions of the Abbots Ripton signalman began to shunt into the siding, as normal, to let the Flying Scotsman overtake. The signalman urged the driver to hurry up, as he was "keeping the Scotchman standing at Wood Walton (the previous signal box)". [9]
The signalman at Holme had been concerned that, because the coal train was so late, if it went on to Abbots Ripton before shunting into a siding the Flying Scotsman would be delayed. To avoid this, he had decided to stop the train at Holme and put it into a siding there. He set his signal levers to put his signals to danger, but when the coal train arrived at Holme at 6.21 pm it did not stop. He telegraphed to Abbots Ripton that the train had run past the signals, [note 8] [10] and told the stationmaster at Holme that the train had disobeyed the signals. As the Inquiry report noted "The evidence as to what then happened at the Holme station was unsatisfactorily given, and is not clear".
The Holme station master told the enquiry that he then sent for the platelayers; whilst waiting for them he checked the up line home signal and saw it to be at 'danger'. However, when a down express went through he noticed that one of the signals did not go to 'danger' after it had passed. [note 9] [11] This appeared considerably at variance with other testimony.
The platelayers had to be sent for because they had been allowed to go home at the end of their normal working day, despite the weather. Their foreman was uneasy about this and came out of his house to watch the up distant signal whilst two trains went past: the first of these was the Manchester express, running about 13 minutes behind the Scotsman; the second a slow stopping passenger train, a further 6 minutes behind when it left Peterborough. As he feared, the signal showed a white light throughout. He put his work clothes back on and went to the signal. The arm was weighed down with snow; once he had shaken this off by working the arm up and down it showed a red light. He then walked to the station; on his way he met a platelayer despatched to the distant signal by the stationmaster. [12]
Other witnesses also gave evidence strongly suggesting that the platelayers were not summoned until after the Scotsman had passed and were not back at work until after the Manchester express had passed (c 6.50. [11] ). They reported that other signals (including the up home signal) were – when first checked – in the same state as the up distant. The signalman also claimed that the stationmaster had reported the up home signal to not be working properly.
The Scotch express had left Peterborough at 6.24, about 6 minutes late. It did not slacken speed for the bad weather; it passed through Holme at about 6.37, the signals all showing clear, and arrived at Wood Walton at 6.40. The signalman there had set his signal levers to put his signals to 'danger' to protect the shunting at Abbots Ripton, but had not left his levers to set detonators at the home signal, nor did he supplement his fixed signals by displaying a hand-lamp from the signal box. He told the inquiry he was busy stopping a train of empty coal wagons on the down line, and because of the weather he did not hear the express until it ran past his cabin at full speed. At 6.44 the Scotsman reached Abbots Ripton, its driver having seen "nothing but white lights all the way from Peterboro". It was at full speed (40–45 mph) when it crashed into the coal train, which had not yet cleared the main line. Some coal wagons were smashed, but the coal train engine itself was largely unscathed. The express engine derailed and veered to the right. It ended up lying on its side, beyond the down line. Behind it, its tender and two passenger carriages were obstructing the down line.
The railway workers involved were badly shaken – some admitted it took them a few minutes to fully gather their wits [note 10] but the guards (whose duty it was to 'protect their train') were affected to a lesser extent. The guard of the express walked back up the up line towards Wood Walton, laying fog-signals (detonators) on the rails to warn any further trains to stop. [13] Despite the signals showing 'all clear', the Manchester express stopped in response to the Wood Walton signalman using a hand-lamp to show a red light from his signal-box. It finally pulled up beyond the Wood Walton down distant signal; the Abbots Ripton up distant signal could be seen ahead showing the white “all clear”. [note 11] [14] It then proceeded cautiously towards Abbots Ripton, being stopped successively by the Scotsman guard waving a red hand-lamp and then by a platelayer, eventually drawing up at the rear of the wrecked Scotsman.
The fireman of the coal train similarly laid detonators on the down line just inside the Abbots Ripton down distant signal, and was then picked up by the coal train engine running light to Huntingdon to seek assistance and warn approaching down trains. This was at the instigation of a GNR “relief clerk” (i.e. a clerk qualified to act as a ‘’locum’’ stationmaster) who had been travelling on the express. [note 12]
The Abbots Ripton signalman was evidently dazed by the events; he set his signals in both directions to 'danger' but did not (as he should also have done) immediately send the 5-beat 'obstruction danger' bell signal to Stukeley, the next signal box south. Instead he tried to send a message reporting the crash and seeking assistance by the speaking telegraph to Huntingdon station to the south. [9] [note 13] He prefixed the message with the special 'SP' code indicating top priority but the signalman at Huntingdon did not answer. The Abbots Ripton signalman kept trying to raise Huntingdon, but without success; when the Huntingdon signalman did answer he first refused to accept any message not starting with a code to indicate time sent, and rebuffed subsequent sends with an 'MQ' code – roughly translating as "Go away, I'm busy". [note 14] Indeed, he was; he was accepting the Leeds express and passing it on to the next signal box. At 6.52, after trying and failing for 8 minutes to pass his message to Huntingdon South, the Abbots Ripton signalman sent the 5-beat 'obstruction danger' bell signal to Stukeley.
The down Leeds express passed through Huntingdon at about 6.49 (at which time no message had been accepted from Abbots Ripton) and reached Stukeley at 6.52. The signalman at Stukeley received the 'obstruction danger' message just seconds after the express had passed. The Abbots Ripton down distant signal was showing 'all clear' and the Leeds express approached it at full speed.
I found a white light at the distant signal at Abbotts Ripton. After passing that signal post, I was alarmed by passing over two fog-signals which exploded; I at once shut off steam and told my mate to put on the tender break [ sic ]. I was then going at 40 or 50 miles an hour. In another instant I met an engine on the up road giving sharp whistles, [note 15] and saw a red lamp from it, which I took to mean that there was something out of the ordinary way. I reversed my engine, and reapplied my steam, and as soon as that was done the collision occurred [15]
Still travelling at some speed, the Leeds express ploughed through the tender and carriages blocking the line (this, rather than the first collision, is when most – if not all – of the deaths are thought to have occurred).
The Abbots Ripton signalman had just started his 12-hour shift at 6 pm. His colleague on the day shift returned to work on hearing of the first collision, arriving soon after the second collision. He took over the speaking telegraph, because whilst the duty signalman appeared to be doing his best to send the message he was confused at the time, and I felt I was more able to send the message than he. Messages seeking assistance were then sent to Huntingdon and Peterborough.
A Court of Inquiry was convened, and took evidence from 24 January to 17 February, issuing its report on 23 February. The inquiry rejected the conclusion of the coroner's jury that the block system was at fault and "had proved ineffective in a case of emergency", riposting "such a conclusion, natural enough on a superficial view to those who are not thoroughly versed in the subject, really results from a confusion of ideas". The problem was with signals, and any system of working railways must be ineffective if signals could not be relied upon. [note 16]
The immediate cause was the accumulation of snow on the semaphore arms and/or control wire of several sets of signals. [note 17] On the night of the accident the weight of snow on some signal arms and wires meant that the arm balanced well short of the 'danger' position and that the spectacle plate failed to drop sufficiently to move a red lens in front of the white lamp displayed in the "all clear" position. The signal therefore showed a white light ("all clear") when the lever in the signal box was in fact set to danger; the snow and ice (in the words of the Inquiry Report) thus rendered the signals
not only useless for warning by red-lights the engine-driver of the Scotch-express-train, but also a means by the exhibition of white lights of luring him forward at full speed to the collision.
The inquiry had heard evidence from experienced working-level witnesses that this (or a milder manifestation of this) was a known problem on snowy days but could easily be sorted if you knew how, e.g., by "jiggling the arms". It implicitly rejected the evidence from GNR senior managers who denied that there was any prior history of problems, but made no comment on the discrepancy. [note 18]
Operating practice at that time was that the signals were left in the 'clear' position continuously unless protecting a static obstruction. Consequently, the signals stood at clear for considerable periods of time, and there was little opportunity to spot the problem.
The inquiry report noted various suggested improvements to signal arrangements, but cautioned against over-elaborate solutions:
It is well that these and other proposals for improvement, which are constantly invented or advocated, such as combining sight with sound at the signals, and the use of detonators, mechanically applied, to supersede the use of fogmen, should receive full consideration and discussion, after the experience of so terrible an accident, caused mainly by the failure of existing signal-arrangements. But, in the course of such deliberations, the facts must not be lost sight of, that men are still liable to make mistakes, machinery is still liable to fail, and further complication is by no means certain in all cases to produce greater safety.
It commented adversely on the performance of individuals:
and, without blaming individuals, on
The Board of Trade had no regulatory powers to enforce the recommendations of the inquiry report. The most important were:
Over a longer timescale, and after further accidents
The accident was the inspiration behind the story The Flying Kipper, in the Rev. Wilbert Awdry's book Henry the Green Engine . [16]
Notes
..he did not think it right to find the Holme stationmaster guilty of manslaughter; for it was a heavy responsibility to stop a train without urgent reason, and he placed confidence in the block system which, it appeared, had never failed except on this fatal night. If he had committed perjury, they ought not to find him guilty of manslaughter to punish him for that. The conduct of the signalman at Abbots Ripton was most lamentable but he did not think it criminalwould certainly seem to have assumed that the stationmaster was justified to assume that the block system would give protection even if he knew that the signalling was failed or unreliable.
References
The Quintinshill rail disaster was a multi-train rail crash which occurred on 22 May 1915 outside the Quintinshill signal box near Gretna Green in Dumfriesshire, Scotland. It resulted in the deaths of over 200 people and remains the worst rail disaster in British history.
The Abergele rail disaster took place near Abergele, North Wales, in August 1868. At the time, it was the worst railway disaster to have occurred in Great Britain.
The Hawes Junction rail crash occurred at 5.49 am on 24 December 1910, just north of Lunds Viaduct between Hawes Junction and Aisgill on the Midland Railway's Settle and Carlisle main line in the North Riding of Yorkshire, England. It was caused when a busy signalman, Alfred Sutton, forgot about a pair of light engines waiting at his down (northbound) starting signal to return to their shed at Carlisle. They were still waiting there when the signalman set the road for the down Scotch express. When the signal cleared, the light engines set off in front of the express into the same block section. Since the light engines were travelling at low speed from a stand at Hawes Junction, and the following express was travelling at high speed, a collision was inevitable. The express caught the light engines just after Moorcock Tunnel near Aisgill summit in Mallerstang and was almost wholly derailed.
The Charfield railway disaster was a fatal train crash which occurred on 13 October 1928 in the village of Charfield in the English county of Gloucestershire. The London, Midland and Scottish Railway (LMS) Leeds to Bristol night mail train failed to stop at the signals protecting the down refuge siding at Charfield railway station. The weather was misty, but there was not a sufficiently thick fog for the signalman at Charfield to employ fog signalmen. A freight train was in the process of being shunted from the down main line to the siding, and another train of empty goods wagons was passing through the station from the Bristol (up) direction.
Over the latter years of the 19th and early years of the 20th centuries, Penistone in Yorkshire gained a name as an accident black-spot on Britain's railway network; indeed, it could be said to hold the title of the worst accident black-spot in the country. The main line through the town was the Woodhead route of the Manchester, Sheffield and Lincolnshire Railway between Sheffield Victoria and Manchester, London Road. The line was heavily graded with a summit some 400 yards inside the eastern portal of the Woodhead tunnel.
The 1892 Thirsk rail crash happened at Manor House signal box on 2 November 1892, on the North Eastern Railway about 3 miles (4.8 km) north of Thirsk railway station in the North Riding of Yorkshire, England.
Rule 55 was an operating rule which applied on British railways in the 19th and 20th centuries. It was superseded by the modular rulebook following re-privatisation of the railways. It survives, very differently named: the driver of a train waiting at a signal on a running line must remind the signaller of its presence.
The Winwick rail crash took place at Winwick Junction, near Warrington on the London, Midland and Scottish Railway, on 28 September 1934. Two trains collided, resulting in 11 deaths and 19 injured.
Two rail accidents have occurred near Castlecary, Scotland. One of these was in 1937 and one in 1968. Both events involved rear-end collisions, and caused the deaths of 35 and 2 people respectively.
The Connington South rail crash occurred on 5 March 1967 on the East Coast Main Line near the village of Conington, Huntingdonshire, England. Five passengers were killed and 18 were injured.
The Seer Green rail crash occurred on the morning of 11 December 1981 near Seer Green, Buckinghamshire, England between two four-car Class 115 diesel multiple units, killing one driver and three passengers.
The 1984 Eccles rail crash occurred on 4 December 1984 at Eccles, Greater Manchester, when an express passenger train collided at speed with the rear of a freight train of oil tankers. The driver of the express and two passengers were killed, and 68 people were injured. The cause of the accident was determined to be that the driver of the express train had passed a signal at danger.
The Norton Fitzwarren rail crash occurred on 11 November 1890, at Norton Fitzwarren station on the Great Western Railway, approximately two miles south-west of Taunton in Somerset. A special boat train carrying passengers from Plymouth to Paddington collided with a goods train that was being shunted on the main line. Ten passengers were killed, and eleven people were seriously injured. Another significant accident occurred at Norton Fitzwarren in 1940.
The Wrawby Junction rail crash was a train crash which occurred on 9 December 1983, at Wrawby Junction, near Barnetby station, North Lincolnshire, England.
Abbots Ripton railway station was a railway station on the East Coast Main Line in the English county of Cambridgeshire. Although trains still pass on the now electrified railway the station closed in 1958. Due to the position of the station in a cutting, it had two platforms which were staggered. These served the fast lines only, though the goods lines ran around the back of each.
The Knowle and Dorridge rail crash was a fatal rail crash that occurred at Dorridge railway station in Warwickshire, England, on 15 August 1963. Three people died in the crash after a signalman's error routed a small freight train into the path of an express passenger train which slowed but could not stop before colliding with it.
The Chelford rail accident occurred on 22 December 1894 at Chelford railway station. The stationmaster was supervising shunting operations, during which a high-sided wagon was fly-shunted into a siding in strong winds and rapidly fading light. As another six wagons were being run onto an adjoining road, the stationmaster saw the high-sided wagon being blown out of its siding by the wind to meet them. A collision occurred derailing the runaway in such a way that it fouled the main line just as the 16:15 Manchester to Crewe express approached, drawn by two locomotives, LNWR Waterloo Class 2-4-0 No 418 Zygia and Experiment Class No 518 Express. The stationmaster ran towards them waving a red lamp but the drivers thought he was signalling to the shunters and did not slacken speed. Zygia derailed and fell on her side whilst her tender ran up the platform ramp. Express remained upright but the first carriage demolished the front of a signalbox. In all, 14 passengers were killed and 48 injured.
The Kirtlebridge rail crash took place in 1872 at Kirtlebridge railway station in Dumfriesshire. An express passenger train ran into a goods train that was shunting; 11 people lost their lives immediately, and one further person succumbed later. The cause was a failure to communicate between the station master in charge of the shunting operation, and the signalman. There was not full interlocking of the points, and the block system of signalling was not in use.
The Lincolnshire Wolds Railway Signals and Telecommunications Department is a railway department on the preserved heritage railway in Lincolnshire, England. It installs, maintains and repairs all the signalling and telecommunications on the LWR. Based primarily at Ludborough, the department looks after the railways two functioning signal boxes at Ludborough and North Thoresby.
On the evening of 26 December 1962, cold weather and snow in and around Crewe had caused points to become frozen and trains were being detained at signals. About midway between Winsford and Crewe, the 13:30 Glasgow Central to London Euston Mid-Day Scot, hauled by an English Electric type 4 diesel, D215, with 13 coaches and 500 passengers, was stopped at a signal but the driver found the telephone to Coppenhall Junction, the next signal box ahead, out of order. Seeing the next signal ahead he decided to proceed down towards it and use the telephone there, but too fast. In the darkness he failed to notice the 16:45 express from Liverpool Lime Street to Birmingham New Street, hauled by an electric locomotive with eight coaches with 300 passengers, standing on the line ahead and collided with it at about 20 mph (32 km/h).