One can derive transformation formulas for ordinary accelerations in three spatial dimensions (three-acceleration or coordinate acceleration) as measured in an external inertial frame of reference, as well as for the special case of proper acceleration measured by a comoving accelerometer. Another useful formalism is four-acceleration, as its components can be connected in different inertial frames by a Lorentz transformation. Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion. Eventually, it is also possible to describe these phenomena in accelerated frames in the context of special relativity, see Proper reference frame (flat spacetime). In such frames, effects arise which are analogous to homogeneous gravitational fields, which have some formal similarities to the real, inhomogeneous gravitational fields of curved spacetime in general relativity. In the case of hyperbolic motion one can use Rindler coordinates, in the case of uniform circular motion one can use Born coordinates.
In accordance with both Newtonian mechanics and SR, three-acceleration or coordinate acceleration is the first derivative of velocity with respect to coordinate time or the second derivative of the location with respect to coordinate time:
.
However, the theories sharply differ in their predictions in terms of the relation between three-accelerations measured in different inertial frames. In Newtonian mechanics, time is absolute by in accordance with the Galilean transformation, therefore the three-acceleration derived from it is equal too in all inertial frames:[4]
.
On the contrary in SR, both and depend on the Lorentz transformation, therefore also three-acceleration and its components vary in different inertial frames. When the relative velocity between the frames is directed in the x-direction by with as Lorentz factor, the Lorentz transformation has the form
In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates and of the Lorentz transformation with respect to and , from which the transformation of three-velocity (also called velocity-addition formula) between and follows, and eventually by another differentiation with respect to and the transformation of three-acceleration between and follows. Starting from (1a), this procedure gives the transformation where the accelerations are parallel (x-direction) or perpendicular (y-, z-direction) to the velocity:[6][7][8][9][H 4][H 15]
(1c)
or starting from (1b) this procedure gives the result for the general case of arbitrary directions of velocities and accelerations:[10][11]
(1d)
This means, if there are two inertial frames and with relative velocity , then in the acceleration of an object with momentary velocity is measured, while in the same object has an acceleration and has the momentary velocity . As with the velocity addition formulas, also these acceleration transformations guarantee that the resultant speed of the accelerated object can never reach or surpass the speed of light.
If four-vectors are used instead of three-vectors, namely as four-position and as four-velocity, then the four-acceleration of an object is obtained by differentiation with respect to proper time instead of coordinate time:[12][13][14]
(2a)
where is the object's three-acceleration and its momentary three-velocity of magnitude with the corresponding Lorentz factor . If only the spatial part is considered, and when the velocity is directed in the x-direction by and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered, the expression is reduced to:[15][16]
Unlike the three-acceleration previously discussed, it is not necessary to derive a new transformation for four-acceleration, because as with all four-vectors, the components of and in two inertial frames with relative speed are connected by a Lorentz transformation analogous to (1a, 1b). Another property of four-vectors is the invariance of the inner product or its magnitude , which gives in this case:[16][13][17]
In infinitesimal small durations there is always one inertial frame, which momentarily has the same velocity as the accelerated body, and in which the Lorentz transformation holds. The corresponding three-acceleration in these frames can be directly measured by an accelerometer, and is called proper acceleration[18][H 14] or rest acceleration.[19][H 12] The relation of in a momentary inertial frame and measured in an external inertial frame follows from (1c, 1d) with , , and . So in terms of (1c), when the velocity is directed in the x-direction by and when only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered, it follows:[12][19][18][H 1][H 2][H 14][H 12]
(3a)
Generalized by (1d) for arbitrary directions of of magnitude :[20][21][17]
There is also a close relationship to the magnitude of four-acceleration: As it is invariant, it can be determined in the momentary inertial frame , in which and by it follows :[19][12][22][H 16]
.
(3b)
Thus the magnitude of four-acceleration corresponds to the magnitude of proper acceleration. By combining this with (2b), an alternative method for the determination of the connection between in and in is given, namely[13][17]
from which (3a) follows again when the velocity is directed in the x-direction by and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered.
Assuming constant mass , the four-force as a function of three-force is related to four-acceleration (2a) by , thus:[23][24]
(4a)
The relation between three-force and three-acceleration for arbitrary directions of the velocity is thus[25][26][23]
(4b)
When the velocity is directed in the x-direction by and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered[27][26][23][H 2][H 6]
(4c)
Therefore, the Newtonian definition of mass as the ratio of three-force and three-acceleration is disadvantageous in SR, because such a mass would depend both on velocity and direction. Consequently, the following mass definitions used in older textbooks are not used anymore:[27][28][H 2]
as "longitudinal mass",
as "transverse mass".
The relation (4b) between three-acceleration and three-force can also be obtained from the equation of motion[29][25][H 2][H 6]
(4d)
where is the three-momentum. The corresponding transformation of three-force between in and in (when the relative velocity between the frames is directed in the x-direction by and only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered) follows by substitution of the relevant transformation formulas for , , , , or from the Lorentz transformed components of four-force, with the result:[29][30][24][H 3][H 15]
(4e)
Or generalized for arbitrary directions of , as well as with magnitude :[31][32]
(4f)
Proper acceleration and proper force
The force in a momentary inertial frame measured by a comoving spring balance can be called proper force.[33][34] It follows from (4e, 4f) by setting and as well as and . Thus by (4e) where only accelerations parallel (x-direction) or perpendicular (y-, z-direction) to the velocity are considered:[35][33][34]
(5a)
Generalized by (4f) for arbitrary directions of of magnitude :[35][36]
Since in momentary inertial frames one has four-force and four-acceleration , equation (4a) produces the Newtonian relation , therefore (3a, 4c, 5a) can be summarized[37]
(5b)
By that, the apparent contradiction in the historical definitions of transverse mass can be explained.[38] Einstein (1905) described the relation between three-acceleration and proper force[H 5]
,
while Lorentz (1899, 1904) and Planck (1906) described the relation between three-acceleration and three-force[H 2]
By integration of the equations of motion one obtains the curved world lines of accelerated bodies corresponding to a sequence of momentary inertial frames (here, the expression "curved" is related to the form of the worldlines in Minkowski diagrams, which should not be confused with "curved" spacetime of general relativity). In connection with this, the so-called clock hypothesis of clock postulate has to be considered:[39][40] The proper time of comoving clocks is independent of acceleration, that is, the time dilation of these clocks as seen in an external inertial frame only depends on its relative velocity with respect to that frame. Two simple cases of curved world lines are now provided by integration of equation (3a) for proper acceleration:
b) The constant, transverse proper acceleration by (3a) can be seen as a centripetal acceleration,[13] leading to the worldline of a body in uniform rotation[43][44]
(6b)
where is the tangential speed, is the orbital radius, is the angular velocity as a function of coordinate time, and as the proper angular velocity.
A classification of curved worldlines can be obtained by using the differential geometry of triple curves, which can be expressed by spacetime Frenet-Serret formulas.[45] In particular, it can be shown that hyperbolic motion and uniform circular motion are special cases of motions having constant curvatures and torsions,[46] satisfying the condition of Born rigidity.[H 11][H 17] A body is called Born rigid if the spacetime distance between its infinitesimally separated worldlines or points remains constant during acceleration.
Instead of inertial frames, these accelerated motions and curved worldlines can also be described using accelerated or curvilinear coordinates. The proper reference frame established that way is closely related to Fermi coordinates.[47][48] For instance, the coordinates for an hyperbolically accelerated reference frame are sometimes called Rindler coordinates, or those of a uniformly rotating reference frame are called rotating cylindrical coordinates (or sometimes Born coordinates). In terms of the equivalence principle, the effects arising in these accelerated frames are analogous to effects in a homogeneous, fictitious gravitational field. In this way it can be seen, that the employment of accelerating frames in SR produces important mathematical relations, which (when further developed) play a fundamental role in the description of real, inhomogeneous gravitational fields in terms of curved spacetime in general relativity.
Hendrik Lorentz[H 1] derived the correct (up to a certain factor ) relations for accelerations, forces and masses between a resting electrostatic systems of particles (in a stationary aether), and a system emerging from it by adding a translation, with as the Lorentz factor:
, , for , thus longitudinal and transverse mass by (4c);
Lorentz explained that he has no means of determining the value of . If he had set , his expressions would have assumed the exact relativistic form.
1904:
Lorentz[H 2] derived the previous relations in a more detailed way, namely with respect to the properties of particles resting in the system and the moving system , with the new auxiliary variable equal to compared to the one in 1899, thus:
for longitudinal and transverse mass as a function of the rest mass by (4c, 5b).
This time, Lorentz could show that , by which his formulas assume the exact relativistic form. He also formulated the equation of motion
with
which corresponds to (4d) with , with , , , , , and as electromagnetic rest mass. Furthermore, he argued, that these formulas should not only hold for forces and masses of electrically charged particles, but for other processes as well so that the earth's motion through the aether remains undetectable.
with , and as the Lorentz factor, the charge density. Or in modern notation: , , , and . As Lorentz, he set .
1905:
Albert Einstein[H 5] derived the equations of motions on the basis of his special theory of relativity, which represent the relation between equally valid inertial frames without the action of a mechanical aether. Einstein concluded, that in a momentary inertial frame the equations of motion retain their Newtonian form:
.
This corresponds to , because and and . By transformation into a relatively moving system he obtained the equations for the electrical and magnetic components observed in that frame:
.
This corresponds to (4c) with , because and and and . Consequently, Einstein determined the longitudinal and transverse mass, even though he related it to the force in the momentary rest frame measured by a comoving spring balance, and to the three-acceleration in system :[38]
, with and and , in agreement with those given by Lorentz (1904).
1907:
Einstein[H 7] analyzed a uniformly accelerated reference frame and obtained formulas for coordinate dependent time dilation and speed of light, analogous to those given by Kottler-Møller-Rindler coordinates.
1907:
Hermann Minkowski[H 9] defined the relation between the four-force (which he called the moving force) and the four acceleration
corresponding to .
1908:
Minkowski[H 8] denotes the second derivative with respect to proper time as "acceleration vector" (four-acceleration). He showed, that its magnitude at an arbitrary point of the worldline is , where is the magnitude of a vector directed from the center of the corresponding "curvature hyperbola" (German: Krümmungshyperbel) to .
1909:
Max Born[H 10] denotes the motion with constant magnitude of Minkowski's acceleration vector as "hyperbolic motion" (German: Hyperbelbewegung), in the course of his study of rigidly accelerated motion. He set (now called proper velocity) and as Lorentz factor and as proper time, with the transformation equations
.
which corresponds to (6a) with and . Eliminating Born derived the hyperbolic equation , and defined the magnitude of acceleration as . He also noticed that his transformation can be used to transform into a "hyperbolically accelerated reference system" (German: hyperbolisch beschleunigtes Bezugsystem).
1909:
Gustav Herglotz[H 11] extends Born's investigation to all possible cases of rigidly accelerated motion, including uniform rotation.
1910:
Arnold Sommerfeld[H 13] brought Born's formulas for hyperbolic motion in a more concise form with as the imaginary time variable and as an imaginary angle:
He noted that when are variable and is constant, they describe the worldline of a charged body in hyperbolic motion. But if are constant and is variable, they denote the transformation into its rest frame.
1911:
Sommerfeld[H 14] explicitly used the expression "proper acceleration" (German: Eigenbeschleunigung) for the quantity in , which corresponds to (3a), as the acceleration in the momentary inertial frame.
1911:
Herglotz[H 12] explicitly used the expression "rest acceleration" (German: Ruhbeschleunigung) instead of proper acceleration. He wrote it in the form and which corresponds to (3a), where is the Lorentz factor and or are the longitudinal and transverse components of rest acceleration.
1911:
Max von Laue[H 15] derived in the first edition of his monograph "Das Relativitätsprinzip" the transformation for three-acceleration by differentiation of the velocity addition
equivalent to (1c) as well as to Poincaré (1905/6). From that he derived the transformation of rest acceleration (equivalent to 3a), and eventually the formulas for hyperbolic motion which corresponds to (6a):
thus
,
and the transformation into a hyperbolic reference system with imaginary angle :
.
He also wrote the transformation of three-force as
von Laue[H 16] replaced in the second edition of his book the transformation of three-acceleration by Minkowski's acceleration vector for which he coined the name "four-acceleration" (German: Viererbeschleunigung), defined by with as four-velocity. He showed, that the magnitude of four-acceleration corresponds to the rest acceleration by
,
which corresponds to (3b). Subsequently, he derived the same formulas as in 1911 for the transformation of rest acceleration and hyperbolic motion, and the hyperbolic reference frame.
Related Research Articles
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:
The laws of physics are invariant (identical) in all inertial frames of reference. This is known as the principle of relativity.
The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light. Such formulas apply to successive Lorentz transformations, so they also relate different frames. Accompanying velocity addition is a kinematic effect known as Thomas precession, whereby successive non-collinear Lorentz boosts become equivalent to the composition of a rotation of the coordinate system and a boost.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.
In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.
The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product .
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.
In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession.
Ritz ballistic theory is a theory in physics, first published in 1908 by Swiss physicist Walther Ritz. In 1908, Ritz published Recherches critiques sur l'Électrodynamique générale, a lengthy criticism of Maxwell-Lorentz electromagnetic theory, in which he contended that the theory's connection with the luminiferous aether made it "essentially inappropriate to express the comprehensive laws for the propagation of electrodynamic actions."
In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.
In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.
There are many ways to derive the Lorentz transformations using a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.
A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.
References
↑ Misner & Thorne & Wheeler (1973), p. 163: "Accelerated motion and accelerated observers can be analyzed using special relativity."
1 2 Pfeffer & Nir (2012), p. 115, "In the special case in which the particle is momentarily at rest relative to the observer S, the force he measures will be the proper force".
French, A.P. (1968). Special Relativity. CRC Press. ISBN1420074814.
Freund, J. (2008). Special Relativity for Beginners: A Textbook for Undergraduates. World Scientific. ISBN978-9812771599.
Gourgoulhon, E. (2013). Special Relativity in General Frames: From Particles to Astrophysics. Springer. ISBN978-3642372766.
von Laue, M. (1921). Die Relativitätstheorie, Band 1 (fourth edition of "Das Relativitätsprinzip"ed.). Vieweg.; First edition 1911, second expanded edition 1913, third expanded edition 1919.
Koks, D. (2006). Explorations in Mathematical Physics. Springer. ISBN0387309438.
Kopeikin, S.; Efroimsky, M.; Kaplan, G. (2011). Relativistic Celestial Mechanics of the Solar System. John Wiley & Sons. ISBN978-3527408566.
1 2 3 4 Sommerfeld, Arnold (1911). "Über die Struktur der gamma-Strahlen". Sitzungsberichte der Mathematematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München (1): 1–60.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.