The examples and perspective in this article may not represent a worldwide view of the subject.(April 2014) |
An air taxi is a small commercial aircraft that makes short flights on demand. [1]
The concept of air taxis existed as early as the 1910s. [2] This concept goes back as early as 1917 with Glenn Curtiss’ prototype, the auto-plane. [2] Furthermore, during the 1920s to the late 1950s, various inventors created their own prototypes. Such inventors included Henry Ford, Waldo Waterman, and Moulton “Molt” Taylor. [2] However, each of these projects faced challenges which included crashes, lack of funding, or technical difficulties. [2] After all this experimentation and challenges faced, the urban air mobility industry had shifted focus on “improving safety and enhancing economic and operational efficiency of vertical flight". [2]
The next phase from the 1950s to the late 1980s included urban air mobility services through the use of helicopters within major cities such as Los Angeles, San Francisco, and New York; however, the challenges of fuel costs and safety have made it difficult to commercialize using helicopters for urban air mobility. [2]
During the 2010s to the present day, there was the “reemergence” of catering to “on-demand aviation services” that focus on goods delivery and passenger mobility such as the ability of booking a helicopter through a smartphone. [2] BLADE, SkyRyde, and UberCopter are just some examples of companies that are offering passenger mobility helicopter services. [2] Additionally, NASA and the United States Air Force initiated a focus to improve safety and scalability of UAM systems through the launch of the AAM National Campaign and Agility Prime. [2] NASA showed this initiative by signing agreements with 17 companies to test UAM vehicles and systems. [2] On the other hand, the U.S. Air Force's Agility Prime program demonstrates a focus on scalability through exploring vertical flight opportunities for military applications. [2]
The air taxi market is an application of Advanced Air Mobility (AAM) –air transportation systems that utilize advanced technologies such as vertical takeoffs, autonomous capabilities, or fully-electric systems –for short to mid range on-demand flights. [3] [4] Many AAM vehicles are designed for Short Takeoff and Landing (STOL) or Vertical Takeoff and Landings (VTOL); electric VTOL aircraft are also prominent, known as eVTOLs. [4]
Another noteworthy term for the air taxi market is Urban Air Mobility (UAM), which is a sub-category of AAM focused on applications in urban settings. [4]
Air taxi designs vary to accommodate various numbers of passengers. [5] NASA has proposed various designs that could accommodate various numbers of passengers such as: single, six, and fifteen passenger air taxi aircraft. [5] NASA has analyzed three possible options of vehicle design to outweigh the most optimal model for missions, in which they compare mathematical statistics for a hybrid, turboshaft, and electrical aircraft models. [5] Whereas for more of a single path commercial use the European Union Aviation Safety Agency propose that electrical aircraft will be the main source of power for air taxis, to ensure that air taxis are being designed with the new electronical technology. [6]
Various designs have been considered when it comes to the development of air taxis. Development of designs are used for different purposes in based on the following criteria
For the most part, air taxis will be designed to be electrical and function as helicopters. [7] Many companies such as Joby Aviation have partnered with the military to learn and redesign operations of the aircraft. [7] Joby's partnership with the military allows for various testing within the military environment, such as transportation of cargo, medical evacuations, etc. [7] Air taxis can be used for both commercial and private use to improve air mobility. [8] The purpose will determine designs and technology, in which for the most part commercial use is predicted to be created as autonomous aircraft. [8]
One market analysis estimated early market demand for airport shuttles (AAMs along set routes to, from, and between airports) and air taxis to be 55,000 daily trips and 82,000 daily passengers – an annual value of US$2.5 billion. [9] Facilitating an on-demand air taxi market similar to current ride-hailing services requires the infrastructure for highly prevalent vertistops, areas that can support vertical landings and takeoffs based on consumer demand rather than predetermined routes, which may be a barrier for profitable implementation by 2030. [3] Moreover, market studies point to infrastructure as among the most significant constraints for the air taxi market. [9] [3] It is also predicted that 98% of demand for air taxis is created from ground transportation trips longer than 30 minutes. [9] Because of these factors, areas with a high-density of wealthy individuals or businesses, such as New York or San Francisco, may offer a shorter path to profitability for air taxi services. [3] [10] San Francisco specifically is viewed as a possible early market for air taxis because of its large population of frequent, long-distance commuters. [10] Some market studies assume autonomous operation of air taxis for their predictions, current FAA implementation plans for AAM constrains the scope of AAMs to aircraft operated with a pilot on board. [3] [4]
Air taxi and air charter operations are governed by 14 CFR Part 135 and 14 CFR part 298 of the Federal Aviation Regulations (FAR). [11]
In July 2023, the FAA released Version 1.0 of the Advanced Air Mobility (AAM) Implementation Plan, describing short-term implementation goals for AAM. These goals are centered around Innovate28, aka I28 – a joint program between the United States government and the AAM industry created by the FAA for the purpose of developing early stage AAM utilization in at least one site by 2028. [4] First efforts by the program anticipate utilizing existing airports and helipads with potential modifications – such as parking stations, charging ports, or weather monitoring capabilities – being added as needed. [4]
In Canada, air taxi operations are regulated by Transport Canada under Canadian Aviation Regulation 703. The Canadian definition of air taxi includes all commercial single-engine aircraft, multi-engine helicopters flown by visual flight rules by one pilot and all multi-engine, non-turbo-jet aircraft, with a maximum take-off weight 8,618 kg (18,999 lb) or less and nine or fewer passenger seats, that are used to transport people or goods or for sightseeing. [12]
Companies such as Uber claim air taxis and other VTOL aircraft will enable rapid and reliable transportation. [13] Uber plans to develop new skyports, which may provide multidimensional routes opposed to traditional routes taken by current forms of transportation. To achieve efficiency, the current proposed plan is to use the top decks of parking structures and current existing helipads to create multiple skyports for the future. [13] EVTOL developer TCab Tech raised 20 million dollars in its first round of funding. [14] The company has received more than 200 provisional orders for its E20 model, in which Chinese media has reported that the E20 will COST $970,000 per unit. [14] Other companies, such as the German consultancy Roland Berger, have predicted about 3,000 flying taxis will be in operation by 2025 with as many as 98,000 by 2050.
In addition, Joby Aviation plans to be in operation in New York by 2025. They plan to offer electric air taxi transport from JFK airport to downtown Manhattan. [15] Joby Aviation also plans to offer booking on demand, similar to rideshare apps. [15] Furthermore, in 2025, Joby and Delta airlines hope to launch eVTOL flights in New York and Los Angeles. Additionally, United and Archer Aviation plan to do the same in Chicago. [16] This shift towards urban air mobility is supported by Delta Airlines statistics that is estimating about 1,000 people a day would choose eVTOLS instead of automobiles to travel to and from the airport. [16]
A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.
A personal air vehicle (PAV) is a proposed class of passenger aircraft providing on-demand air transport.
East 34th Street Heliport is a heliport on the east side of Manhattan located on the East River Greenway, between the East River and the FDR Drive viaduct. Also known as the Atlantic Metroport at East 34th Street, it is a public heliport owned by New York City and run by the Economic Development Corporation.
Guangzhou EHang Intelligent Technology Co. Ltd. is a company based in Guangzhou, China that develops and manufactures autonomous aerial vehicles (AAVs) and passenger AAVs which have entered service in China for aerial cinematography, photography, emergency response, and survey missions.
Blade Air Mobility, Inc. is an aviation company headquartered in New York City and incorporated in Delaware. Blade's urban air mobility platform provides air transportation for passengers and last-mile critical cargo, primarily using helicopters and amphibious aircraft for passenger routes in the United States, Canada, Southern Europe, and India, in addition to being one of the largest air medical transporters of human organs for transplant in the world. Blade began trading on the Nasdaq on May 10, 2021, via a SPAC merger.
A passenger drone is an autonomous aircraft that is designed to carry a small number of passengers to a destination.
Urban air mobility (UAM) is the use of small, highly automated aircraft to carry passengers or cargo at lower altitudes in urban and suburban areas which have been developed in response to traffic congestion. It usually refers to existing and emerging technologies such as traditional helicopters, vertical-takeoff-and-landing aircraft (VTOL), electrically propelled vertical-takeoff-and-landing aircraft (eVTOL), and unmanned aerial vehicles (UAVs). These aircraft are characterized by the use of multiple electric-powered rotors or fans for lift and propulsion, along with fly-by-wire systems to control them. Inventors have explored urban air mobility concepts since the early days of powered flight. However, advances in materials, computerized flight controls, batteries and electric motors improved innovation and designs beginning in the late 2010s. Most UAM proponents envision that the aircraft will be owned and operated by professional operators, as with taxis, rather than by private individuals.
The Airbus CityAirbus is a multinational project by Airbus Helicopters to produce an electrically powered VTOL personal air vehicle demonstrator. It is intended for the air taxi role, to avoid ground traffic congestion.
The Airbus Vahana was an electric-powered eight-propeller VTOL personal air vehicle prototype, or eVTOL, financed by A³, by Airbus and Airbus Urban Mobility. The Vahana project started in 2016 as one of the first projects at A³, the advanced projects and partnerships outpost of Airbus Group in Silicon Valley. Airbus "envision[s] Vahana being used by everyday commuters as a cost-comparable replacement for short-range urban transportation like cars or trains". It was planned to be a part of urban air mobility. The project was finished in December 2019.
Joby Aviation is a United States venture-backed aviation company, developing an electric vertical takeoff and landing (eVTOL) aircraft that it intends to operate as an air taxi service. Joby Aviation is headquartered in Santa Cruz, California, and has offices in San Carlos, California; Marina, California; and Munich, Germany.
Volocopter GmbH is a German aircraft manufacturer based in Bruchsal and founded by Alexander Zosel and Stephan Wolf. The company specializes in the design of electric multirotor helicopters in the form of personal air vehicles, designed for air taxi use. The CEO is Dirk Hoke and chairman Stefan Klocke.
The Transcend Air Vy 400 is a tiltwing convertible aircraft developed by American startup Transcend Air.
Vertical Aerospace Ltd. is an aerospace manufacturer based in Bristol, England. It designs and builds zero emission, electric vertical take-off and landing (eVTOL) electrically powered aircraft.
Beta Technologies, is a South Burlington, Vermont-based aerospace manufacturer developing electric vertical take off and landing (eVTOL) and electric conventional take-off and landing (eCTOL) aircraft for the cargo, medical passenger, and military aviation industries. The company has also developed a network of chargers which can supply power to their aircraft and other electric vehicles. Training programs for future electric aircraft pilots and maintainers are also provided.
An electric vertical take-off and landing (eVTOL) aircraft is a variety of VTOL aircraft that uses electric power to hover, take off, and land vertically. This technology came about owing to major advances in electric propulsion and the emerging need for new aerial vehicles for Advanced Air Mobility and Urban Air Mobility that can enable greener and quieter flights. Electric and hybrid propulsion systems (EHPS) have also the potential of lowering the operating costs of aircraft.
The VoloRegion is an electrically powered aircraft that can take off and land vertically (eVTOL). It is being developed by the German company Volocopter.
Archer Aviation Inc. is a publicly traded company headquartered in San Jose, California, which is developing eVTOL aircraft.
Advanced air mobility (AAM) are systems that incorporate support for next-generation transport such as such as remotely piloted, autonomous, or vertical take-off and landing (VTOL) aircraft. This includes those powered by electric or hybrid-electric propulsion.
The National Advanced Air Mobility Center of Excellence is a research facility dedicated to studying air mobility and Unmanned Aircraft Systems (UAS). It contains 30,000 square feet of administrative, laboratory, meeting, and collaboration space with an additional 25,000 square feet of aircraft hangar space. The facility is located at the Springfield–Beckley Municipal Airport, which is close by to Wright-Patterson Air Force Base.
TCab Technology Co., Ltd. is a company based in Shanghai, China that develops and manufactures electric vertical take-off and landing (eVTOL) aircraft. The name "TCab" stands for "time taxi." The company produces zero-emission eVTOL aircraft for public use in advanced air mobility (AAM) air ridesharing services.