Aleochara bilineata

Last updated

Aleochara bilineata
Aleochara bilineata Gyllenhal, 1810.png
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Coleoptera
Family: Staphylinidae
Genus: Aleochara
Species:
A. bilineata
Binomial name
Aleochara bilineata
Gyllenhal, 1810

Aleochara bilineata is a species of rove beetle that lives in sub-tropical and cold tolerant climates throughout the world. This beetle was first biologically described by Wadsworth in 1915. [1] It is used by humans as crop pest control due to the variety of pests it consumes, including caterpillars, mealybugs, mites, maggots. These beetles have a larval phase that occurs over the winter and an adult phase that emerges in the spring. [1] They are often found in moist environments, in compost, or near crops.

Contents

Physical appearance

Adult rove beetles are jet black and measure 5–6 millimetres (0.20–0.24 in) long. [1] They have antennae that have large pointed hairs that contain contact chemoreceptors and shorter hairs that contain olfactory receptors. [2] As larvae, these beetles are small and wingless. [3] As adults, they have small, reddish-brown forewings with transparent hindwings folded beneath. When these beetles are attacked, their long abdomen can curve up, giving the appearance of a scorpion. [4]

The eggs of A. bilineata are oval and covered with gelatin-like material which at first is a pale green color but turns darker later on. These eggs also absorb water from their environment and are capable of increasing in volume. Small larvae are pale brown, while larger parasitic larvae are white and are typically found with the host. There is evidence that large larvae have a better fitness than small larvae, as large larvae live longer, walk faster, and find hosts more rapidly than small larvae.

Adult A. bilineata with wings extended Aleochara bilineata.jpg
Adult A. bilineata with wings extended

Life cycle

Aleochara bilineata larvae (Lesne et Mercier, 1922).jpg

Before winter, female A. bilineata lay tiny, white elliptical eggs, which are deposited in the soil of crops that attract pests. They are capable of laying about 15 eggs per day and average 700 eggs per season. [4] Eggs are deposited in the soil, where larvae hatch in 5 to 10 days. During winter periods, A. bilineata live as parasites inside of a wide variety of host pupae. These hosts are often maggots. Two heavily studied maggots that A. bilineata parasitize are the cabbage maggot and onion maggot. [4] Larvae emerge from their hosts after 30 to 40 days and live as adults for around 40 to 60 days. In total, the life cycle is about 6 weeks. [4]

Behavior

Parasitism

Unlike other parasitic insects who lay their eggs directly on the host, A. bilineata females lay their eggs in locations likely to harbor parasitic hosts. [5] Females use varying factors to determine clutch size and where they lay their eggs, including the presence of a host and absence of predators. Once the mobile A. bilineata larva emerges from the egg, it then searches the area around it for a suitable fly pupa. [5] These beetle larvae have a limited time (approximately 4 days) to find fly pupae and are only able to parasitize one pupa during their lifetime. Since these larvae are solitary parasitoids, whether or not they are able to find a fly to parasitize has strong implications in whether the beetle larva will develop properly. These beetles' hosts aggregate together around crops, leading to local foraging by A. bilineata. [3] [5] After the beetle locates a suitable host, it gnaws through the puparium of the fly and closes the hole it made by excreting a viscous substance through its anus, which acts as a plug. [6] If there are limited amounts of hosts, these beetles will likely fight to the death in order to secure a host. [3] This species is more likely to attack medium and large fly pupae when given the chance. [7]

Oviposition

Host location and selection is performed exclusively by young larvae. However, the region in which larvae search in is determined by the mother. Importantly, females will only lay a few eggs if there are no hosts or plants that hosts feed on. [5] When only buried maggots are available, females choose to lay their eggs close to the pupae, but when females are presented a choice between laying eggs on an undamaged plant or close to the pupae, females will choose to lay their eggs on the undamaged plant. [5] This unintuitive pattern can be explained by females having a hard time finding maggots buried in the ground when vegetation covers the ground. Since it is likely that maggots are near the plant to begin with, female beetles hedge their bets and deposit their eggs on plants instead. Between an undamaged plant and a damaged plant, females will choose to deposit their eggs on the damaged plant. [5] These adaptations show that females are highly tuned to lay their eggs in optimal positions. Certain females are able to oviposit small eggs which can serve as food for emerging larvae. The age of the female beetle also affects the number and size of eggs laid.

Altruism

The benefits of kin recognition in solitary animals are sparse. Despite their solitary nature, A. bilineata larvae are able to discriminate kin and can perform altruistic behavior for their siblings. [3] These larvae discriminate their kin through plugs that obstruct the entrance hole of resident larva in host flies. This association is likely through the viscous substance that the plug is made out of. It is thought that this endogenous recognition mechanism is through a self-referent phenotype matching mechanism, since larvae hatched and maintained in complete isolation were still able to tell kin from non-kin. [3]

One evolutionary reason why A. bilineata display kin recognition could be that there are frequent encounters between larvae and kin-parasitized hosts. Since A. bilineata females lay eggs in clutches, larvae looking for host flies are likely to find flies already parasitized by one of their siblings. [3] It has been found that A. bilineata are more likely to avoid kin parasitized hosts than hosts parasitized by non-kin in situations where there are limited numbers of hosts. [3] This is interpreted as altruistic behavior towards kin since this behavior is beneficial to sibling beetles and also represents a cost to the foraging beetle. As a result, there are higher mortality rates when there are more beetles than hosts and the beetles are also closely related. [3]

Altruistic behavior only seems to be present when A. bilineata are still in the larvae stage. During the adult portion of their life cycle, A. bilineata become cannibalistic, eating their own eggs and attacking other adults when food supplies are low.

Infochemicals

Once A. bilineata emerge from their hosts, they need to forage for food and mates. These adults are attracted and live around the plants that their prey feed off of, including cabbage and other produce plants. [8] In addition, there is a strong correlation between an increase in weeds and other plants in areas where A. bilineata reside and a decrease in population density of the beetles. [9] A. bilineata are more likely to respond to chemicals given off from an infested prey habitat compared to an uninfested prey habitat. [8] Particularly, A. bilineata respond strongly to water-soluble chemicals originating from the integument of maggot larvae, even when larvae are not present. When food deprived, A. bilineata are more likely to respond to food stimuli rather than stimuli associated with mates and oviposition sites. [8] In summary, A. bilineata use a combination of prey food chemicals and volatiles from the integuments of larvae to determine the best sites for mating, food foraging, and oviposition. It is thought that some of the responses to infochemicals are the result of learning or conditioning of individuals to the attractants produced by maggots. [8]

Interactions with humans as biocontrol

Due to its predation of root maggot pests, A. bilineata are used by farmers as a natural biological control agent against pest populations. [10] These beetles act as a predator in the adult stage and are parasitic during the larval stage, in which they are parasitoids of flies including the cabbage root fly. [1] A problem for farmers who use A. bilineata as a control agent is that A. bilineata's emerges several weeks after maggots emerge during the spring season. As a result, these beetles have been mass produced by humans and released when maggots start to emerge from their nests. [10] This mass production method produces approximately 10,000 A. bilineata adults per week. This, compounded with adult beetles being able to consume up to five maggot larvae per day, provides for an efficient method to control pests. A drawback of using A. bilineata as pest control is that many pesticides are toxic to them. [11] These pesticides include insect growth regulators and spinosad sprays. As a result, other common insects are often chosen instead, including a different species of rove beetle that is currently commercially available.

Related Research Articles

<span class="mw-page-title-main">Parasitoid</span> Organism that lives with its host and kills it

In evolutionary ecology, a parasitoid is an organism that lives in close association with its host at the host's expense, eventually resulting in the death of the host. Parasitoidism is one of six major evolutionary strategies within parasitism, distinguished by the fatal prognosis for the host, which makes the strategy close to predation.

<span class="mw-page-title-main">Tachinidae</span> Family of insects

The Tachinidae are a large and variable family of true flies within the insect order Diptera, with more than 8,200 known species and many more to be discovered. Over 1,300 species have been described in North America alone. Insects in this family commonly are called tachinid flies or simply tachinids. As far as is known, they all are protelean parasitoids, or occasionally parasites, of arthropods, usually other insects. The family is known from many habitats in all zoogeographical regions and is especially diverse in South America.

<span class="mw-page-title-main">Apple maggot</span> Species of fly

The apple maggot, also known as the railroad worm, is a species of fruit fly, and a pest of several types of fruits, especially apples. This species evolved about 150 years ago through a sympatric shift from the native host hawthorn to the domesticated apple species Malus domestica in the northeastern United States. This fly is believed to have been accidentally spread to the western United States from the endemic eastern United States region through contaminated apples at multiple points throughout the 20th century. The apple maggot uses Batesian mimicry as a method of defense, with coloration resembling that of the forelegs and pedipalps of a jumping spider.

<span class="mw-page-title-main">Hyperparasite</span> Parasite of another parasite

A hyperparasite, also known as a metaparasite, is a parasite whose host, often an insect, is also a parasite, often specifically a parasitoid. Hyperparasites are found mainly among the wasp-waisted Apocrita within the Hymenoptera, and in two other insect orders, the Diptera and Coleoptera (beetles). Seventeen families in Hymenoptera and a few species of Diptera and Coleoptera are hyperparasitic. Hyperparasitism developed from primary parasitism, which evolved in the Jurassic period in the Hymenoptera. Hyperparasitism intrigues entomologists because of its multidisciplinary relationship to evolution, ecology, behavior, biological control, taxonomy, and mathematical models.

<span class="mw-page-title-main">Parasitoid wasp</span> Group of wasps

Parasitoid wasps are a large group of hymenopteran superfamilies, with all but the wood wasps (Orussoidea) being in the wasp-waisted Apocrita. As parasitoids, they lay their eggs on or in the bodies of other arthropods, sooner or later causing the death of these hosts. Different species specialise in hosts from different insect orders, most often Lepidoptera, though some select beetles, flies, or bugs; the spider wasps (Pompilidae) exclusively attack spiders.

<span class="mw-page-title-main">Eucharitidae</span> Family of wasps

The Eucharitidae are a family of parasitic wasps. Eucharitid wasps are members of the superfamily Chalcidoidea and consist of three subfamilies: Oraseminae, Eucharitinae, and Gollumiellinae. Most of the 55 genera and 417 species of Eucharitidae are members of the subfamilies Oraseminae and Eucharitinae, and are found in tropical regions of the world.

<i>Phthorimaea operculella</i> Species of moth

Phthorimaea operculella, also known as the potato tuber moth or tobacco splitworm, is a moth of the family Gelechiidae. It is an oligophagous insect that feeds on the plant family Solanaceae and is especially known for being a major pest of potato crops. Currently farmers utilize insecticides, parasites, and sprinkler irrigation in order to prevent P. operculella from infesting their croplands.

<i>Aleochara</i> Genus of beetles

Aleochara is a genus in the beetle family Staphylinidae, the rove beetles. Larvae of Staphylinidae occur in many assorted ecological roles, most being scavengers, predators or carrion feeders, but the larvae of at least those species of Aleochara whose life histories are known are parasitoids. They feed in the puparia of suitable species of flies, killing the host in the process. Adult Aleochara are predators.

<i>Delia</i> (fly) Genus of flies

Delia flies are members of the Anthomyiidae family within the superfamily Muscoidae. The identification of different species of Delia can be very difficult for non-specialists as the diagnostic characteristics used for immature and/or female specimens may be inconsistent between species. Past taxonomic keys were not as comprehensive in their identification of Delia specimens; they were either too reliant on genetic characteristics, focused solely on a specific life stage, or were focused only on certain species. However current taxonomic keys aim to be more thorough by not only including morphological diagnostics for males, females, and immature specimens of various species, but also their genetic make-up or molecular barcode.

<i>Rhagoletis mendax</i> Species of fly

Rhagoletis mendax is a species of tephritid fruit fly known by the common name blueberry maggot. The blueberry maggot is closely related to the apple maggot, a larger fruit fly in the same genus. It is a major pest of plant species in the Ericaceae family, such as blueberry, cranberry, and huckleberry. The larva is 5 to 8 mm long, apodous, and white with chewing mouthparts. Female adults are 4.75 mm in length, males are slightly smaller. Both adults are mostly black in color with white stripes, orange-red eyes, and a single pair of clear wings with black banding. The adult female fly lays a single egg per blueberry, and when the larva hatches it consumes the fruit, usually finishing the entire berry in under 3 weeks and rendering it unmarketable. The larva then falls to the soil and pupates. Adult flies emerge, mate, and females oviposit when blueberry plants are producing fruit. Each female fly can lay 25 to 100 eggs in their lifetime.

<span class="mw-page-title-main">Wasp</span> Group of insects

A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. The wasps do not constitute a clade, a complete natural group with a single ancestor, as bees and ants are deeply nested within the wasps, having evolved from wasp ancestors. Wasps that are members of the clade Aculeata can sting their prey.

<i>Xanthocryptus novozealandicus</i> Species of wasp

Xanthocryptus novozealandicus, the lemon tree borer parasite, is a wasp in the family Ichneumonidae. It is a native insect of New Zealand. It is also found in Australia and New Guinea. Females hunt for larvae of wood-boring beetles around March, including the lemon tree borer, a native cerambycid that tunnels into citrus trees, grapes and many native species. When a suitable host is found, the female pushes her ovipositor through the wood and injects her eggs into the grub. This has the incidental benefit of helping to control some pests. X. novozealandicus prefers to prey on second year lemon tree borer larvae. This specific parasite prefers to prey on larger second year larvae due to its larger size.

<i>Cadra figulilella</i> Species of moth

Cadra figulilella, the raisin moth, is a moth of the family Pyralidae. The raisin moth is known most commonly as a pest that feeds on dried fruits, such as the raisin and date. It covers a range that includes much of the world, primarily situating itself in areas of California, Florida, the Eastern Mediterranean region, and some parts of Africa, Australia, and South America. The moth prefers to live in a hot, arid climate with little moisture and plentiful harvest for its larvae to feed on. Study of this species is important due to the vast amount of economic damage it causes yearly and worldwide to agriculture crops.

<i>Aphelinus mali</i> Species of wasp

Aphelinus mali is a parasitoid wasp that exploits the woolly apple aphid, a pest of apple trees. It is native to the northeastern United States but has been introduced to other parts of the world as a biological pest control agent.

<i>Spathius agrili</i> Species of wasp

Spathius agrili is a parasitic non-stinging wasp of family Braconidae which is native to North Asia. It is a parasitoid of the emerald ash borer, an invasive species which has destroyed tens of millions of ash trees in its introduced range in North America. As part of the campaign against the emerald ash borer (EAB), American scientists in conjunction with the Chinese Academy of Forestry began searching in 2003 for its natural enemies in the wild, leading to the discovery of several parasitoid wasp species, including Spathius agrili. S. agrili was discovered in Tianjin, China where it is a prevalent parasitoid of EAB larvae in stands of an introduced ash species, and an endemic ash species. S. agrili has been recorded to attack and kill up to 90 percent of EAB larvae.

<span class="mw-page-title-main">Madrone butterfly</span> Species of butterfly

Eucheira socialis, commonly known as the Madrone butterfly is a lepidopteran that belongs to the family Pieridae. It was first described by John O. Westwood in 1834. Locally known as Mariposa del madroño or tzauhquiocuilin, it is endemic to the highlands of Mexico, and exclusively relies on the Madrone as a host-plant. The species is of considerable interest to lepidopterists due to gregarious nest-building in the larval stages, and heavily male-biased sex ratio. It takes an entire year for this adult butterfly to develop from an egg. The eggs are laid in the month of June and the adults emerge the following May–June. The adults have a black and white pattern on their wings, and the males are generally much smaller and paler than the females. The larvae do not undergo diapause and continue to feed and grow communally in the coldest months of the year. There are two subspecies of E. socialis, named E. socialis socialis and E. socialis westwoodi.

<i>Curculio elephas</i> Species of beetle

Curculio elephas is a species of beetle in the family Curculionidae, the true weevils. It is known commonly as the chestnut weevil. It is a serious pest of chestnut in Europe.

<span class="mw-page-title-main">Callosobruchus chinensis</span>

Callosobruchus chinensis, also known as the adzuki bean weevil, pulse beetle, Chinese bruchid or cowpea bruchid, is a common species of beetle found in the bean weevil subfamily. Although it is commonly known as the adzuki bean weevil, it is in fact not a true weevil, belonging instead to the leaf beetle family, Chrysomelidae.

<i>Dahlbominus fuscipennis</i> Species of wasp

Dahlbominus fuscipennis, the sawfly parasitic wasp, is a species of chalcid wasp from the family Eulophidae which parasitizes the European pine sawfly Neodiprion sertifer, among other hosts. It is the only species in the genus Dahlbominus.

Exorista mella is a tachinid fly of the genus Ezorista within the family Tachinidae of the order Diptera. They are typically found in the United States and Canada. Within the U.S in the state of Arizona they have been found in both mountainous and agricultural regions. E. mella is a parasitoid fly, a polyphagous generalist which parasitizes a variety of hosts.

References

  1. 1 2 3 4 Colhoun, E. H. (January 1953). "Notes on the Stages and the Biology of". The Canadian Entomologist. 85 (1): 1–8. doi:10.4039/Ent851-1. ISSN   1918-3240. S2CID   86646586.
  2. Skilbeck, Christopher A.; Anderson, Moray (1996-07-01). "The ultrastructure, morphology and distribution of sensilla on the antennae of the adult parasitoids Aleochara bilineata gyll and Aleochara bipustulata L. (Coleoptera: Staphylinidae)". International Journal of Insect Morphology and Embryology. 25 (3): 261–280. doi:10.1016/0020-7322(96)00005-0. ISSN   0020-7322.
  3. 1 2 3 4 5 6 7 8 Lizé, Anne; Carval, Dominique; Cortesero, Anne Marie; Fournet, Sylvain; Poinsot, Denis (2006-09-22). "Kin discrimination and altruism in the larvae of a solitary insect". Proceedings of the Royal Society B: Biological Sciences. 273 (1599): 2381–2386. doi:10.1098/rspb.2006.3598. ISSN   0962-8452. PMC   1636088 . PMID   16928642.
  4. 1 2 3 4 Read, D. C. (April 1962). "Notes on the Life History of Aleochara bilineata (Gyll.) (Coleoptera: Staphylinidae), and on Its Potential Value as a Control Agent for the Cabbage Maggot, Hylemya brassicae (Bouché) (Diptera: Anthomyiidae)". The Canadian Entomologist. 94 (4): 417–424. doi:10.4039/ent94417-4. ISSN   0008-347X. S2CID   86198155.
  5. 1 2 3 4 5 6 Fournet, S.; Poinsot, D.; Brunel, E.; Nénon, J. P.; Cortesero, A. M. (November 2001). "Do female coleopteran parasitoids enhance their reproductive success by selecting high-quality oviposition sites?". Journal of Animal Ecology. 70 (6): 1046–1052. Bibcode:2001JAnEc..70.1046F. doi:10.1046/j.0021-8790.2001.00557.x. ISSN   0021-8790.
  6. Skilbeck, Christopher A.; Anderson, Moray (1996-07-01). "The ultrastructure, morphology and distribution of sensilla on the antennae of the adult parasitoids Aleochara bilineata gyll and Aleochara bipustulata L. (Coleoptera: Staphylinidae)". International Journal of Insect Morphology and Embryology. 25 (3): 261–280. doi:10.1016/0020-7322(96)00005-0. ISSN   0020-7322.
  7. Jonasson, T.; Ahlström-Olsson, M.; Johansen, T. J. (June 1995). "Aleochara suffusa andA. bilineata (Col.: Staphylinidae) as parasitoids of brassica root flies in northern Norway". Entomophaga. 40 (2): 163–167. doi:10.1007/bf02373065. ISSN   0013-8959. S2CID   10085644.
  8. 1 2 3 4 Royer, Lucie; Boivin, Guy (February 1999). "Infochemicals mediating the foraging behaviour of Aleochara bilineata Gyllenhal adults: sources of attractants". Entomologia Experimentalis et Applicata. 90 (2): 199–205. Bibcode:1999EEApp..90..199R. doi:10.1046/j.1570-7458.1999.00439.x. ISSN   0013-8703. S2CID   84640259.
  9. Broatch, Jim S.; Dosdall, Lloyd M.; O’Donovan, John T.; Harker, K. Neil; Clayton, George W. (2010-01-01). "Responses of the specialist biological control agent, Aleochara bilineata, to vegetational diversity in canola agroecosystems". Biological Control. 52 (1): 58–67. Bibcode:2010BiolC..52...58B. doi:10.1016/j.biocontrol.2009.08.009. ISSN   1049-9644.
  10. 1 2 Whistlecraft, J. W.; Harris, C. R.; Tolman, J. H.; Tomlin, A. D. (1985). "Mass-rearing Technique for Aleochara bilineata (Coleoptera: Staphylinidae)". Journal of Economic Entomology. 78 (4): 995–997. doi:10.1093/jee/78.4.995 . Retrieved 2024-02-29.
  11. Cisneros, Juan; Goulson, Dave; Derwent, Lara C.; Penagos, Dora I.; Hernández, Olivia; Williams, Trevor (February 2002). "Toxic Effects of Spinosad on Predatory Insects". Biological Control. 23 (2): 156–163. Bibcode:2002BiolC..23..156C. doi:10.1006/bcon.2001.1000.