Aminodeoxychorismate synthase

Last updated
4-amino-4-deoxychorismate synthase
PabB.png
Aminodeoxychorismate synthase
Identifiers
EC no. 2.6.1.85
CAS no. 132264-37-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an aminodeoxychorismate synthase (EC 2.6.1.85) is an enzyme that catalyzes the chemical reaction

Contents

chorismate + L-glutamine 4-amino-4-deoxychorismate + L-glutamate

Thus, the two substrates of this enzyme are chorismate and L-glutamine, whereas its two products are 4-amino-4-deoxychorismate and L-glutamate. [1] [2] [3] [4]

It is part of a pathway for the biosynthesis of para-aminobenzoic acid (PABA); a precursor for the production of folates. Folates are family of cofactors that are essential for living organisms. Folate cofactors are used in several one-carbon transfer reactions required during the synthesis of essential metabolites, including methionine and thymidylate. [1]

Aminodeoxychorismate synthase (PabB), a 51 kDa protein in E. coli , is encoded by the gene pabB. [2] 4-amino-4-deoxychorismate, the product of PabB, can be converted to para-aminobenzoic acid by the enzyme 4-amino-4-deoxychorismate lyase (PabC).

Nonmenclature

This enzyme belongs to the class of transferases. This means that aminodeoxychorismate synthase catalyzes the transfer of one functional group from a molecule to another. Specifically, aminodeoxychorismate synthase is a transaminase that transfers an amino group to a keto acid. The systematic name is Chorismate:L-glutamine aminotransferase. Formerly aminodeoxychorismate synthase was referred to as PABA synthase; however this name is no longer recommended [5] as it is understood that the formation of PABA requires the action of a further enzyme (4-amino-4-deoxychorismate lyase).

Common names that the enzyme goes by are: [6]

Reaction

Aminodeoxychorismate synthase.png

In certain microbial species such as Escherichia coli, aminodeoxychorismate synthase is a heterodimeric complex composed of two proteins, glutamine amidotransferase (PabA) and 4-amino-4-deoxychorismate synthase (PabB). In other species such as plants or lower eukaryotes an enzyme comprising a single polypeptide performs both reactions.

In Escherichia coli, the reaction is a two step process. Glutamine amidotransferase (PabA) and 4-amino-4-deoxychorismate synthase (PabB) form a heterodimeric complex that catalyzes the synthesis of 4-amino-4-deoxychorismate. The first step occurs with PabA abstracting ammonia from glutamine. The second step occurs when PabB reacts both substrates (chorismate and ammonia) to synthesize 4-amino-4-deoxychorismate.

In plants such as Arabidopsis thaliana , aminodeoxychorismate synthase is a monomeric enzyme that carries out both steps of the reaction. [1]

Structure

Aminodeoxychorismate synthase (PabB) is either a heterodimeric or monomeric enzyme depending on what organism it is from. The enzyme has 452-residues and consists of both alpha and beta folds that is very similar to some types of anthranilate synthase. The core of PabB consists of two domains that form a beta sandwich. Also, it has helices and loops around the outside of its core. [3] The chorismate binding site on PabB consists of amino acids residues that make up beta sheet core and the two key alpha helices. [4]

Certain aminodeoxychorismate synthase enzymes contain an additional binding site for tryptophan, thought to be a non-functional vestigial binding site. It is believed that aminodeoxychorismate synthase may have evolved from anthranilate synthase (TrpE) - an enzyme that catalyses the production of an intermediate on the path to tryptophan. [3]

Homologues

Enzymes with similar structures to aminodeoxychorismate synthase are:

A common feature among this list of enzymes is that they all utilize chorismate as a substrate.

Anti-folate drug target

Aminodeoxychorismate synthase is targeted by the antibiotics atrop -abyssomycin C and 6-fluoroshikimic acid. By inhibiting the production of an intermediate on the pathway to PABA, folate levels are depleted. Without sufficient folate, DNA and protein synthesis are severely impaired.

Related Research Articles

4-Aminobenzoic acid (also known as para-aminobenzoic acid or PABA because the two functional groups are attached to the benzene ring across from one another in the para position) is an organic compound with the formula H2NC6H4CO2H. PABA is a white solid, although commercial samples can appear gray. It is slightly soluble in water. It consists of a benzene ring substituted with amino and carboxyl groups. The compound occurs extensively in the natural world.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Chorismic acid</span> Chemical compound

Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for:

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Dihydropteroate synthase</span> Class of enzymes

Dihydropteroate synthase is an enzyme classified under EC 2.5.1.15. It produces dihydropteroate in bacteria, but it is not expressed in most eukaryotes including humans. This makes it a useful target for sulfonamide antibiotics, which compete with the PABA precursor.

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Isochorismate synthase</span>

Isochorismate synthase ( EC 5.4.4.2) is an isomerase enzyme that catalyzes the first step in the biosynthesis of vitamin K2 (menaquinone) in Escherichia coli.

<span class="mw-page-title-main">Phosphoribosylanthranilate isomerase</span> Enzyme involved in tryptophan synthesis

In enzymology, a phosphoribosylanthranilate isomerase (PRAI) is an enzyme that catalyzes the third step of the synthesis of the amino acid tryptophan.

<span class="mw-page-title-main">Cystathionine beta-lyase</span> Enzyme

Cystathionine beta-lyase, also commonly referred to as CBL or β-cystathionase, is an enzyme that primarily catalyzes the following α,β-elimination reaction

4-amino-4-deoxychorismate lyase is an enzyme that participates in folate biosynthesis by catalyzing the production of PABA by the following reaction

<span class="mw-page-title-main">Anthranilate synthase</span>

The enzyme anthranilate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate lyase</span>

The enzyme chorismate lyase catalyzes the first step in ubiquinone biosynthesis, the removal of pyruvate from chorismate, to yield 4-hydroxybenzoate in Escherichia coli and other Gram-negative bacteria. It belongs to the family of lyases, specifically the oxo-acid-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is chorismate pyruvate-lyase (4-hydroxybenzoate-forming). Other names in common use include CL, CPL, and UbiC.

<span class="mw-page-title-main">Indole-3-glycerol-phosphate synthase</span> Class of enzymes

The enzyme indole-3-glycerol-phosphate synthase (IGPS) (EC 4.1.1.48) catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate synthase</span>

The enzyme chorismate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cystathionine gamma-synthase</span>

In enzymology, a cystathionine gamma-synthase is an enzyme that catalyzes the formation of cystathionine from cysteine and an activated derivative of homoserine, e.g.:

<span class="mw-page-title-main">2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase</span> Enzyme

In enzymology, a 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glutamine amidotransferase</span>

In molecular biology, glutamine amidotransferases (GATase) are enzymes which catalyse the removal of the ammonia group from a glutamine molecule and its subsequent transfer to a specific substrate, thus creating a new carbon-nitrogen group on the substrate. This activity is found in a range of biosynthetic enzymes, including glutamine amidotransferase, anthranilate synthase component II, p-aminobenzoate, and glutamine-dependent carbamoyl-transferase (CPSase). Glutamine amidotransferase (GATase) domains can occur either as single polypeptides, as in glutamine amidotransferases, or as domains in a much larger multifunctional synthase protein, such as CPSase. On the basis of sequence similarities two classes of GATase domains have been identified: class-I and class-II. Class-I GATase domains are defined by a conserved catalytic triad consisting of cysteine, histidine and glutamate. Class-I GATase domains have been found in the following enzymes: the second component of anthranilate synthase and 4-amino-4-deoxychorismate (ADC) synthase; CTP synthase; GMP synthase; glutamine-dependent carbamoyl-phosphate synthase; phosphoribosylformylglycinamidine synthase II; and the histidine amidotransferase hisH.

3-Deoxy-<small>D</small>-<i>arabino</i>-heptulosonic acid 7-phosphate Chemical compound

3-Deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) is a 7-carbon ulonic acid. This compound is found in the shikimic acid biosynthesis pathway and is an intermediate in the production of aromatic amino acids.

2-amino-4-deoxychorismate synthase is an enzyme with systematic name (2S)-2-amino-4-deoxychorismate:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

References

  1. 1 2 3 SAHR, Tobias (May 15, 2006). "Folate synthesis in plants: purification, kinetic properties, and inhibition of aminodeoxychorismate synthase". Biochem. J. 396 (1): 157–62. doi:10.1042/BJ20051851. PMC   1449997 . PMID   16466344.
  2. 1 2 Ye, Qi-Zhuang (August 23, 1990). "p-Aminobenzoate synthesis in Escherichia coli: Purification and characterization of PabB as aminodeoxychorosmate synthase and enzyme X as aminodeoxychorismate lyase". Proc Natl Acad Sci USA. 87 (23): 9391–5. Bibcode:1990PNAS...87.9391Y. doi: 10.1073/pnas.87.23.9391 . PMC   55171 . PMID   2251281.
  3. 1 2 3 Parsons, James (November 21, 2001). "Structure of Escherichia coli Aminodeoxychorismate Synthase: Architectural Conservation and Diversity in Chorismate-Utilizing Enzymes". Biochemistry. 41 (7): 2198–2208. doi:10.1021/bi015791b. PMID   11841211.
  4. 1 2 Bera, Asim (December 21, 2013). "Structure of Aminodeoxychorismate Synthase from Stenotrophomonas maltophilia". Biochemistry. 51 (51): 10208–17. doi:10.1021/bi301243v. PMC   3532939 . PMID   23230967.
  5. Green JM, Nichols BP (1991). "p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxychorismate lyase and cloning of pabC". J. Biol. Chem. 266 (20): 12971–5. doi: 10.1016/S0021-9258(18)98790-9 . PMID   2071583.
  6. "ENZYME: 2.6.1.85". KEGG.