Research into the mental disorder of schizophrenia, involves multiple animal models as a tool, including in the preclinical stage of drug development.
Several models simulate schizophrenia defects. These fit into four basic categories: pharmacological models, developmental models, lesion models, and genetic models. Historically, pharmacological, or drug-induced models were the most widely used. These involve the manipulation of various neurotransmitter systems, including dopamine, glutamate, serotonin, and GABA. Lesion models, in which an area of an animal's brain is damaged, arose from theories that schizophrenia involves neurodegeneration, and that problems during neurodevelopment cause the disease. Traditionally, rodent models of schizophrenia mostly targeted symptoms analogous to the positive symptoms of schizophrenia, with some models also having symptoms similar to the negative symptoms. Recent developments in schizophrenia research, however, have targeted cognitive symptoms as some of the most debilitating and influential in patients' daily lives, and thus have become a larger target in animal models of schizophrenia. [1] Animals used as models for schizophrenia include rats, mice, and primates.
The modelling of schizophrenia in animals can range from attempts to imitate the full extent of symptoms found in schizophrenia, to more specific modelling which investigate the efficacy of antipsychotic drugs. Each extreme has its limitations, with whole-syndrome modeling often failing due to the complexity and heterogeneous nature of schizophrenia, as well as difficulty translating human specific diagnostic criteria such as disorganized speech to animals. Antipsychotic-specific modelling faces similar issues, one of which is that it is not useful for discovering drugs with unique mechanisms of action, while traditional medications for schizophrenia have generalized effects (blocking of dopamine receptors) that make it difficult to attribute outcomes to schizophrenia specifically. Developing models based on a particular sign or symptom of schizophrenia has thus become a more common approach. This approach has the advantage that the results are more likely to be valid across the species boundary. [2]
In order for an animal model to be useful in developing treatments, results from the animal model must translate into results in the patient with schizophrenia, this is called the validity of the model. [3] Criteria for assessing the validity of animal models of schizophrenia include face validity, construct validity, and predictive validity. [3] [4] While no animal model can fully encompass all aspects of schizophrenia, progress has been made in using animals to model schizophrenia and its relationship to other mental disorders, such as addiction. [5]
The validity of an animal model of schizophrenia can be measured using several behavioural, cellular and anatomical traits (the phenotype of the model). [2]
In the dopamine hypothesis of schizophrenia, schizophrenia was hypothesised to be caused by disturbed dopamine neurotransmission. Dopamine is a monoamine neurotransmitter which is involved in other diseases, such as Parkinson's disease. There is evidence for increased activity of the mesolimbic pathway, a dopaminergic pathway, in schizophrenia patients. This comes from the discovery of increased L-DOPA decarboxylase levels in the brains of these patients. L-DOPA decarboxylase is an enzyme which converts L-DOPA to dopamine by removing a carboxyl group. [8] Animal models were first produced for schizophrenia by altering the dopaminergic system using drugs. [9]
Persistent treatment of rodents with amphetamine models show symptoms of schizophrenia including hyperactivity, enduring prepulse inhibition abnormalities, and cognitive abnormalities associated with the prefrontal cortex including attention deficits. Neither negative symptoms, such as problems with social interaction, or hippocampus-related deficits are observed in amphetamine rodent models. The antipsychotics clozapine and haloperidol reverse the effects of amphetamine on attention in rats. [9]
Glutamate is the most abundant excitatory neurotransmitter in vertebrate nervous systems. Evidence for the involvement of glutamate in schizophrenia includes analogous symptoms which are produced by glutamate NMDA receptor antagonists such as phencyclidine (PCP) and ketamine. PCP is a non-competitive NMDA receptor antagonist which produces hallucinations and delusions in normal subjects. In rat models, disturbed cognition, deficits in social interaction, locomotor anomalies, and prepulse inhibition deficits are seen on acute administration of PCP. Evidence that persistent PCP use and abuse in humans results in lasting deficits beyond the period of treatment has led to the suggestion that this regime in rodents may be a more accurate model of schizophrenia than acute administration. A number of protocols for chronic PCP animal models have been developed, with different effects. The effects of some, but not all protocols can be reversed by treatment with antipsychotics. In a primate model, PCP was found to induce cognitive impairments which were reversed with clozapine. [9]
Serotonin is a monoamine neurotransmitter which has been associated with schizophrenia. The psychedelic drug classes indoleamines and phenethylamines can affect serotoninergic 5-HT2A receptors. LSD, an indoleamine, affects startle habituation and prepulse inhibition of startle, which are indicators of human schizophrenia. [8]
Gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter. The GABAergic system may be involved in schizophrenia due to its interactions with the dopaminergic system. Picrotoxin, an antagonist for the GABAA receptor, produces prepulse inhibition of startle in rats. Haloperidol, an antipsychotic drug, reduces this effect. [8]
Studies into the neurodevelopmental and neurodegenerative aspects of schizophrenia have led to the use of lesion models to investigate these aspects. A lesion is damage to an area of tissue by any cause. The evidence for the neurodegenerative theory is a reduction in the volume of the cerebral cortex and an increase in the volumes of the ventricles (cavities in the brain containing cerebrospinal fluid) associated with schizophrenia. Most neurodegenerative diseases produce increased levels of glial cells such as astrocytes, this is not found in schizophrenia. The evidence in favour of the neurodevelopmental theory includes the connection of some physical abnormalities with schizophrenia. [8]
Brain regions used in lesion models of schizophrenia include the prefrontal cortex, the hippocampal formation, and the thalamus. In rat models, lesions of the prefrontal cortex have produced increased and protracted response to stress and a lower prepulse inhibition of startle when treated with apomorphine. [8]
Neonatal lesions of the ventral part of the hippocampus in rats (NVHL rats) is a widely studied developmental animal model of schizophrenia. NVHL rats mimic many of the symptoms of schizophrenia in detail. [10] The behavioural deficits caused by NVHL are seen after puberty and include aggression and social interaction abnormalities. The precise effects of the lesion depend on the day on which it is administered. [9]
There is evidence from epidemiological studies that environmental factors during gestation or around childbirth can increase the probability of someone developing schizophrenia. [9]
Methylazoxymethanol acetate (MAM) is used during gestation to affect aspects of neural development. MAM selectively targets neuroblasts in the central nervous system. As neuroblasts are cells which become neurons, interfering with them using MAM inhibits the areas of the brain which are developing most quickly. The effects of MAM therefore depend on the stage of development at which it is administered, or the gestational age of the subject. In rat studies, administration of MAM at day 17 of gestation (GD17) results in several cognitive and anatomical changes which are common to schizophrenia patients. The thickness of the hippocampus and the thalamus are reduced, the locomotor effects of amphetamines and the spontaneous firing rate of dopominergic neurons in the ventral tegmental area are increased, and defects in working spatial memory are observed. [9] [11]
Rats have a specific social organization within colonies. In social isolation models, pups which are placed in separate cages after being weaned show behavioural changes as adults and altered neural development. These changes remain after being re-introduced into the colony in adulthood. The behavioural deficits caused include neophobia, a larger response to new stimulus, locomotor hyperactivity, and increased aggression. Social isolation rats' inability to habituate to new environments may be caused by an increased mesolimbic dopaminergic activity. [9]
Studies involving twins have shown that schizophrenia is a heritable disease. While no one gene is responsible for the disease, a large number of possible genes have been identified. Genetic animal models of schizophrenia often involve knockout mice, genetically modified mice where one or more of these genes is removed or disrupted. [9]
Disrupted in schizophrenia 1 (DISC1) was one of the first genes discovered to be involved in schizophrenia. As of 2011, seven different strains of DISC1 mouse models had been developed. As in schizophrenia patients, DISC1 mice have an increased lateral ventricle size, reduced cortical size, changes to the hippocampus, and changes to prepulse inhibition of startle which are reversed on treatment with haloperidol and clozapine. [9]
One DISC1 mouse model is induced by the mutagenic chemical ENU. ENU introduces missense point mutations; screening for mutations in a particular exon of DISC1 can produce mouse models with schizophrenia-like behavioural deficits. [12]
The gene NRG1 codes for neuregulin 1, a growth factor which is crucial to the development of the nervous system, and to neurotransmission and formation of synapses in adults. NRG1 and the gene for the receptor to which neuregulin 1 binds, ERBB4, have been tested as possible animal models of schizophrenia. While mice which have two copies of (are homozygous for) a knocked out version of NRG1 do not survive, viable animal models have been developed using heterozygous or partial knockout. One such mouse model is the heterozygous removal of the EGF-like domain on neuregulin 1, these models are called Nrg1(ΔEGF)+/− mice. Nrg1(ΔEGF)+/− mice have been shown to have social interaction problems, reduced prepulse of inhibition and greater spontaneous locomotion. Other neuregulin 1 models include the heterozygous removal of the transmembrane domain (Nrg1(ΔTM)+/− mice) and the immunoglobulin domain (Nrg1(ΔIg)+/− mice). Nrg1(ΔTM)+/− mice display hyperactivity in various conditions, an effect which is reduced by the atypical antipsychotic clozapine. [9]
Dysbindin is a protein coded for by the gene DTNBP1, which has been linked to schizophrenia. [3] Dysbindin may be involved in the changes to neurotransmission observed in patients with schizophrenia. According to SA Jones et al, DTNBP1 is "currently thought to be one of the most promising candidate genes for schizophrenia susceptibility". [9] One naturally occurring animal model involving dysbindin, the sdy (sandy) mouse, has a number of anatomical changes compared to normal mice, including changes to the hippocampus. Sdy mice have homozygous mutations to DTNBP1, and lack the ability to produce dysbindin, heterozygous mutants can be produced by crossing sdy mice with a strain of normal mice. [9]
Reelin is a protein which is involved in synaptic plasticity and synaptogenesis in the brain. In the frontal cortices, cerebellums, and hippocampi of schizophrenia patients, the amount of the protein and its messenger RNA are reduced. Knockout mice in which the reelin gene is disrupted are called reeler mice. In homozygous reeler mice, extreme changes in gait and other behavioural anomalies are seen (illustrated in video); these changes go beyond those associated with schizophrenia. [9]
Heterozygous reeler mice display lower social dominance in some tests, but other social deficits seen in schizophrenia are absent. [13] Reeler mice also have schizophrenia-like anatomical defects in the frontal cortex, but have few cognitive defects which are associated with that area and found in schizophrenia. Tests using the Morris water maze have found that reeler mice do not have the abnormalities in spatial reference memory which are found in patients with schizophrenia. [9]
16p11.2 Duplication
Micro-duplications of a 600 kb region of chromosome 16p11.2 have been associated with a significantly increased risk of schizophrenia. [14] This is a region that is conserved across several species, including mice and rats. This has made it a popular target site for current research into rodent models of schizophrenia.
22q11.2 Deletion
A deletion in chromosome 22q11.2 is the strongest known genetic risk associated with schizophrenia, with 25% of individuals with this deletion ultimately testing positive for schizophrenia. [15]
Phencyclidine or phenylcyclohexyl piperidine (PCP), also known in its use as a street drug as angel dust among other names, is a dissociative anesthetic mainly used recreationally for its significant mind-altering effects. PCP may cause hallucinations, distorted perceptions of sounds, and violent behavior. As a recreational drug, it is typically smoked, but may be taken by mouth, snorted, or injected. It may also be mixed with cannabis or tobacco.
The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. Substantia nigra is Latin for "black substance", reflecting the fact that parts of the substantia nigra appear darker than neighboring areas due to high levels of neuromelanin in dopaminergic neurons. Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta.
The dopamine hypothesis of schizophrenia or the dopamine hypothesis of psychosis is a model that attributes the positive symptoms of schizophrenia to a disturbed and hyperactive dopaminergic signal transduction. The model draws evidence from the observation that a large number of antipsychotics have dopamine-receptor antagonistic effects. The theory, however, does not posit dopamine overabundance as a complete explanation for schizophrenia. Rather, the overactivation of D2 receptors, specifically, is one effect of the global chemical synaptic dysregulation observed in this disorder.
Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS). Dopamine receptors activate different effectors through not only G-protein coupling, but also signaling through different protein interactions. The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors.
Dizocilpine (INN), also known as MK-801, is a pore blocker of the NMDA receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.
Prepulse inhibition (PPI) is a neurological phenomenon in which a weaker prestimulus (prepulse) inhibits the reaction of an organism to a subsequent strong reflex-eliciting stimulus (pulse), often using the startle reflex. The stimuli are usually acoustic, but tactile stimuli and light stimuli are also used. When prepulse inhibition is high, the corresponding one-time startle response is reduced.
Latent inhibition (LI) is a technical term in classical conditioning, where a familiar stimulus takes longer to acquire meaning than a new stimulus. The term originated with Lubow and Moore in 1973. The LI effect is latent in that it is not exhibited in the stimulus pre-exposure phase, but rather in the subsequent test phase. "Inhibition", here, simply connotes that the effect is expressed in terms of relatively poor learning. The LI effect is extremely robust, appearing in both invertebrate and mammalian species that have been tested and across many different learning paradigms, thereby suggesting some adaptive advantages, such as protecting the organism from associating irrelevant stimuli with other, more important, events.
Neurotensin is a 13 amino acid neuropeptide that is implicated in the regulation of luteinizing hormone and prolactin release and has significant interaction with the dopaminergic system. Neurotensin was first isolated from extracts of bovine hypothalamus based on its ability to cause a visible vasodilation in the exposed cutaneous regions of anesthetized rats.
Molindone, sold under the brand name Moban, is an antipsychotic medication which is used in the United States in the treatment of schizophrenia. It is taken by mouth.
Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene.
The glutamate hypothesis of schizophrenia models the subset of pathologic mechanisms of schizophrenia linked to glutamatergic signaling. The hypothesis was initially based on a set of clinical, neuropathological, and, later, genetic findings pointing at a hypofunction of glutamatergic signaling via NMDA receptors. While thought to be more proximal to the root causes of schizophrenia, it does not negate the dopamine hypothesis, and the two may be ultimately brought together by circuit-based models. The development of the hypothesis allowed for the integration of the GABAergic and oscillatory abnormalities into the converging disease model and made it possible to discover the causes of some disruptions.
Pomaglumetad (LY-404,039) is an amino acid analog drug that acts as a highly selective agonist for the metabotropic glutamate receptor group II subtypes mGluR2 and mGluR3. Pharmacological research has focused on its potential antipsychotic and anxiolytic effects. Pomaglumetad is intended as a treatment for schizophrenia and other psychotic and anxiety disorders by modulating glutamatergic activity and reducing presynaptic release of glutamate at synapses in limbic and forebrain areas relevant to these disorders. Human studies investigating therapeutic use of pomaglumetad have focused on the prodrug LY-2140023, a methionine amide of pomaglumetad (also called pomaglumetad methionil) since pomaglumetad exhibits low oral absorption and bioavailability in humans.
SSR180711 is a drug that acts as a potent and selective partial agonist for the α7 subtype of neural nicotinic acetylcholine receptors. In animal studies, it shows nootropic effects and may be useful in the treatment of schizophrenia.
Sonepiprazole (U-101,387, PNU-101,387-G) is a drug of the phenylpiperazine class which acts as a highly selective D4 receptor antagonist. In animals, unlike D2 receptor antagonists like haloperidol, sonepiprazole does not block the behavioral effects of amphetamine or apomorphine, does not alter spontaneous locomotor activity on its own, and lacks extrapyramidal and neuroendocrine effects. However, it does reverse the prepulse inhibition deficits induced by apomorphine, and has also been shown to enhance cortical activity and inhibit stress-induced cognitive impairment. As a result, it was investigated as an antipsychotic for the treatment of schizophrenia in a placebo-controlled clinical trial, but in contrast to its comparator olanzapine no benefits were found and it was not researched further for this indication.
PNU-99,194(A) (or U-99,194(A)) is a drug which acts as a moderately selective D3 receptor antagonist with ~15-30-fold preference for D3 over the D2 subtype. Though it has substantially greater preference for D3 over D2, the latter receptor does still play some role in its effects, as evidenced by the fact that PNU-99,194 weakly stimulates both prolactin secretion and striatal dopamine synthesis, actions it does not share with the more selective (100-fold) D3 receptor antagonists S-14,297 and GR-103,691.
The causes of schizophrenia that underlie the development of schizophrenia, a psychiatric disorder, are complex and not clearly understood. A number of hypotheses including the dopamine hypothesis, and the glutamate hypothesis have been put forward in an attempt to explain the link between altered brain function and the symptoms and development of schizophrenia.
F-15,063 is an orally active potential antipsychotic, and an antagonist at the D2/D3 receptors, partial agonist at the D4 receptor, and agonist at the 5-HT1A receptors. It has greater efficacy at the 5-HT1A receptors than other antipsychotics, such as clozapine, aripiprazole, and ziprasidone. This greater efficacy may lead to enhanced antipsychotic properties, as antipsychotics that lack 5-HT1A affinity are associated with increased risk of extrapyramidal symptoms, and lack of activity against the negative symptoms of schizophrenia.
Methylazoxymethanol acetate, MAM, is a neurotoxin which reduces DNA synthesis used in making animal models of neurological diseases including schizophrenia and epilepsy. MAM is found in cycad seeds, and causes zamia staggers. It selectively targets neuroblasts in the central nervous system. In rats, administration of MAM affects structures in the brain which are developing most quickly. It is an acetate of methylazoxymethanol.
A motivation-enhancing drug, also known as a pro-motivational drug, is a drug which increases motivation. Drugs enhancing motivation can be used in the treatment of motivational deficits, for instance in depression, schizophrenia, and attention deficit hyperactivity disorder (ADHD). They can also be used in the treatment of disorders of diminished motivation (DDMs), including apathy, abulia, and akinetic mutism, disorders that can be caused by conditions like stroke, traumatic brain injury (TBI), and neurodegenerative diseases. Motivation-enhancing drugs are used non-medically by healthy people to increase motivation and productivity as well, for instance in educational contexts.
The conditioned avoidance response (CAR) test, also known as the active avoidance test, is an animal test used to identify drugs with antipsychotic-like effects. It is most commonly employed as a two-way active avoidance test with rodents. The test assesses the conditioned ability of an animal to avoid an unpleasant stimulus. Drugs that selectively suppress conditioned avoidance responses without affecting escape behavior are considered to have antipsychotic-like activity. Variations of the test, like testing for enhancement of avoidance and escape responses, have also been used to assess other drug effects, like pro-motivational and antidepressant-like effects.