Animal model of schizophrenia

Last updated
Laboratory rats are used in some animal models of schizophrenia. Albino Rat.jpg
Laboratory rats are used in some animal models of schizophrenia.

Research into the mental disorder of schizophrenia, involves multiple animal models as a tool, including in the preclinical stage of drug development.

Contents

Several models simulate schizophrenia defects. These fit into four basic categories: pharmacological models, developmental models, lesion models, and genetic models. Historically, pharmacological, or drug-induced models were the most widely used. These involve the manipulation of various neurotransmitter systems, including dopamine, glutamate, serotonin, and GABA. Lesion models, in which an area of an animal's brain is damaged, arose from theories that schizophrenia involves neurodegeneration, and that problems during neurodevelopment cause the disease. Traditionally, rodent models of schizophrenia mostly targeted symptoms analogous to the positive symptoms of schizophrenia, with some models also having symptoms similar to the negative symptoms. Recent developments in schizophrenia research, however, have targeted cognitive symptoms as some of the most debilitating and influential in patients' daily lives, and thus have become a larger target in animal models of schizophrenia. [1] Animals used as models for schizophrenia include rats, mice, and primates.

Uses and limitations

The modelling of schizophrenia in animals can range from attempts to imitate the full extent of symptoms found in schizophrenia, to more specific modelling which investigate the efficacy of antipsychotic drugs. Each extreme has its limitations, with whole-syndrome modeling often failing due to the complexity and heterogeneous nature of schizophrenia, as well as difficulty translating human specific diagnostic criteria such as disorganized speech to animals. Antipsychotic-specific modelling faces similar issues, one of which is that it is not useful for discovering drugs with unique mechanisms of action, while traditional medications for schizophrenia have generalized effects (blocking of dopamine receptors) that make it difficult to attribute outcomes to schizophrenia specifically. Developing models based on a particular sign or symptom of schizophrenia has thus become a more common approach. This approach has the advantage that the results are more likely to be valid across the species boundary. [2]

In order for an animal model to be useful in developing treatments, results from the animal model must translate into results in the patient with schizophrenia, this is called the validity of the model. [3] Criteria for assessing the validity of animal models of schizophrenia include face validity, construct validity, and predictive validity. [3] [4] While no animal model can fully encompass all aspects of schizophrenia, progress has been made in using animals to model schizophrenia and its relationship to other mental disorders, such as addiction. [5]

Phenotype

The validity of an animal model of schizophrenia can be measured using several behavioural, cellular and anatomical traits (the phenotype of the model). [2]

Behavioural traits

Prepulse inhibition
Prepulse inhibition (PPI) is the inhibition of the response to a startling stimulus when the stimulus is preceded by a weaker stimulus. Abnormalities in PPI are seen in patients with schizophrenia. [2] [6]
Latent inhibition
Anomalies in latent inhibition have been linked with schizophrenia in acute events. in latent inhibition, frequent presentation of a stimulus reduces the rate at which the stimulus produces meaning. [2]
Paired click gating
In Paired-click gating or P50 gating, a click which quickly follows a previous click produces a reduced response. This gating is reduced in schizophrenia patients relative to normal subjects. [2]
Social withdrawal
One of the negative symptoms of schizophrenia is social withdrawal, this has been modelled by socially isolating animals. [2]
Locomotor traits
Some locomotor changes, including stereotypy, are used to test the validity of animal models. Locomotor anomalies are often found in patients with schizophrenia. [2]
Context Processing
One cognitive symptom of schizophrenia is deficits in context processing. Animal models of schizophrenia have shown some validity in replicating a schizophrenia specific pattern of context processing deficits [1]
Working Memory
Deficits in working memory are a core deficit in schizophrenia patients, with comparable deficits being used as a measure of validity in animal models. [7]

Other traits

Cortical volume
Reduced volume of the prefrontal cortex is an anatomical trait of schizophrenia patients which is used to test the validity of animal models. [2]
NMDA receptor gene expression
Variations in the expression of the NR2B and NR1 subunits of the NMDA receptor are used to test developmental animal models. [2]
Dopamine release
Neuroimaging studies on patients with schizophrenia have found increased dopamine release after treatment with amphetamine relative to normal controls. [2]

Pharmacological models

Dopamine

Dopamine pathways and associated brain regions. (VTA is the ventral tegmental area.) Dopamine pathways.svg
Dopamine pathways and associated brain regions. (VTA is the ventral tegmental area.)

In the dopamine hypothesis of schizophrenia, schizophrenia was hypothesised to be caused by disturbed dopamine neurotransmission. Dopamine is a monoamine neurotransmitter which is involved in other diseases, such as Parkinson's disease. There is evidence for increased activity of the mesolimbic pathway, a dopaminergic pathway, in schizophrenia patients. This comes from the discovery of increased L-DOPA decarboxylase levels in the brains of these patients. L-DOPA decarboxylase is an enzyme which converts L-DOPA to dopamine by removing a carboxyl group. [8] Animal models were first produced for schizophrenia by altering the dopaminergic system using drugs. [9]

Persistent treatment of rodents with amphetamine models show symptoms of schizophrenia including hyperactivity, enduring prepulse inhibition abnormalities, and cognitive abnormalities associated with the prefrontal cortex including attention deficits. Neither negative symptoms, such as problems with social interaction, or hippocampus-related deficits are observed in amphetamine rodent models. The antipsychotics clozapine and haloperidol reverse the effects of amphetamine on attention in rats. [9]

Glutamate

Glutamate is the most abundant excitatory neurotransmitter in vertebrate nervous systems. Evidence for the involvement of glutamate in schizophrenia includes analogous symptoms which are produced by glutamate NMDA receptor antagonists such as phencyclidine (PCP) and ketamine. PCP is a non-competitive NMDA receptor antagonist which produces hallucinations and delusions in normal subjects. In rat models, disturbed cognition, deficits in social interaction, locomotor anomalies, and prepulse inhibition deficits are seen on acute administration of PCP. Evidence that persistent PCP use and abuse in humans results in lasting deficits beyond the period of treatment has led to the suggestion that this regime in rodents may be a more accurate model of schizophrenia than acute administration. A number of protocols for chronic PCP animal models have been developed, with different effects. The effects of some, but not all protocols can be reversed by treatment with antipsychotics. In a primate model, PCP was found to induce cognitive impairments which were reversed with clozapine. [9]

Serotonin

Serotonin is a monoamine neurotransmitter which has been associated with schizophrenia. The psychedelic drug classes indoleamines and phenethylamines can affect serotoninergic 5-HT2A receptors. LSD, an indoleamine, affects startle habituation and prepulse inhibition of startle, which are indicators of human schizophrenia. [8]

GABA

Gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter. The GABAergic system may be involved in schizophrenia due to its interactions with the dopaminergic system. Picrotoxin, an antagonist for the GABAA receptor, produces prepulse inhibition of startle in rats. Haloperidol, an antipsychotic drug, reduces this effect. [8]

Lesions

Studies into the neurodevelopmental and neurodegenerative aspects of schizophrenia have led to the use of lesion models to investigate these aspects. A lesion is damage to an area of tissue by any cause. The evidence for the neurodegenerative theory is a reduction in the volume of the cerebral cortex and an increase in the volumes of the ventricles (cavities in the brain containing cerebrospinal fluid) associated with schizophrenia. Most neurodegenerative diseases produce increased levels of glial cells such as astrocytes, this is not found in schizophrenia. The evidence in favour of the neurodevelopmental theory includes the connection of some physical abnormalities with schizophrenia. [8]

Brain regions used in lesion models of schizophrenia include the prefrontal cortex, the hippocampal formation, and the thalamus. In rat models, lesions of the prefrontal cortex have produced increased and protracted response to stress and a lower prepulse inhibition of startle when treated with apomorphine. [8]

Neonatal ventral hippocampal lesion

Neonatal lesions of the ventral part of the hippocampus in rats (NVHL rats) is a widely studied developmental animal model of schizophrenia. NVHL rats mimic many of the symptoms of schizophrenia in detail. [10] The behavioural deficits caused by NVHL are seen after puberty and include aggression and social interaction abnormalities. The precise effects of the lesion depend on the day on which it is administered. [9]

Developmental models

There is evidence from epidemiological studies that environmental factors during gestation or around childbirth can increase the probability of someone developing schizophrenia. [9]

Methylazoxymethanol acetate

Molecular model of methylazoxymethanol acetate. Methylazoxymethanol Acetate 3D.png
Molecular model of methylazoxymethanol acetate.

Methylazoxymethanol acetate (MAM) is used during gestation to affect aspects of neural development. MAM selectively targets neuroblasts in the central nervous system. As neuroblasts are cells which become neurons, interfering with them using MAM inhibits the areas of the brain which are developing most quickly. The effects of MAM therefore depend on the stage of development at which it is administered, or the gestational age of the subject. In rat studies, administration of MAM at day 17 of gestation (GD17) results in several cognitive and anatomical changes which are common to schizophrenia patients. The thickness of the hippocampus and the thalamus are reduced, the locomotor effects of amphetamines and the spontaneous firing rate of dopominergic neurons in the ventral tegmental area are increased, and defects in working spatial memory are observed. [9] [11]

Social isolation

Rats have a specific social organization within colonies. In social isolation models, pups which are placed in separate cages after being weaned show behavioural changes as adults and altered neural development. These changes remain after being re-introduced into the colony in adulthood. The behavioural deficits caused include neophobia, a larger response to new stimulus, locomotor hyperactivity, and increased aggression. Social isolation rats' inability to habituate to new environments may be caused by an increased mesolimbic dopaminergic activity. [9]

Genetic models

Studies involving twins have shown that schizophrenia is a heritable disease. While no one gene is responsible for the disease, a large number of possible genes have been identified. Genetic animal models of schizophrenia often involve knockout mice, genetically modified mice where one or more of these genes is removed or disrupted. [9]

DISC1

Disrupted in schizophrenia 1 (DISC1) was one of the first genes discovered to be involved in schizophrenia. As of 2011, seven different strains of DISC1 mouse models had been developed. As in schizophrenia patients, DISC1 mice have an increased lateral ventricle size, reduced cortical size, changes to the hippocampus, and changes to prepulse inhibition of startle which are reversed on treatment with haloperidol and clozapine. [9]

One DISC1 mouse model is induced by the mutagenic chemical ENU. ENU introduces missense point mutations; screening for mutations in a particular exon of DISC1 can produce mouse models with schizophrenia-like behavioural deficits. [12]

Neuregulin 1 and associated genes

The gene NRG1 codes for neuregulin 1, a growth factor which is crucial to the development of the nervous system, and to neurotransmission and formation of synapses in adults. NRG1 and the gene for the receptor to which neuregulin 1 binds, ERBB4, have been tested as possible animal models of schizophrenia. While mice which have two copies of (are homozygous for) a knocked out version of NRG1 do not survive, viable animal models have been developed using heterozygous or partial knockout. One such mouse model is the heterozygous removal of the EGF-like domain on neuregulin 1, these models are called Nrg1(ΔEGF)+/− mice. Nrg1(ΔEGF)+/− mice have been shown to have social interaction problems, reduced prepulse of inhibition and larger spontaneous locomotion. Other neuregulin 1 models include the heterozygous removal of the transmembrane domain (Nrg1(ΔTM)+/− mice) and the immunoglobulin domain (Nrg1(ΔIg)+/− mice). Nrg1(ΔTM)+/− mice display hyperactivity in various conditions, an effect which is reduced by the atypical antipsychotic clozapine. [9]

Dysbindin

Dysbindin is a protein coded for by the gene DTNBP1, which has been linked to schizophrenia. [3] Dysbindin may be involved in the changes to neurotransmission observed in patients with schizophrenia. According to SA Jones et al, DTNBP1 is "currently thought to be one of the most promising candidate genes for schizophrenia susceptibility". [9] One naturally occurring animal model involving dysbindin, the sdy (sandy) mouse, has a number of anatomical changes compared to normal mice, including changes to the hippocampus. Sdy mice have homozygous mutations to DTNBP1, and lack the ability to produce dysbindin, heterozygous mutants can be produced by crossing sdy mice with a strain of normal mice. [9]

Reelin

Reeler mouse.

Reelin is a protein which is involved in synaptic plasticity and synaptogenesis in the brain. In the frontal cortices, cerebellums, and hippocampi of schizophrenia patients, the amount of the protein and its messenger RNA are reduced. Knockout mice in which the reelin gene is disrupted are called reeler mice. In homozygous reeler mice, extreme changes in gait and other behavioural anomalies are seen (illustrated in video); these changes go beyond those associated with schizophrenia. [9]

Heterozygous reeler mice display lower social dominance in some tests, but other social deficits seen in schizophrenia are absent. [13] Reeler mice also have schizophrenia-like anatomical defects in the frontal cortex, but have few cognitive defects which are associated with that area and found in schizophrenia. Tests using the Morris water maze have found that reeler mice do not have the abnormalities in spatial reference memory which are found in patients with schizophrenia. [9]

Other genetic models

G72/G30
The G72/G30 gene complex is a possible risk factor for schizophrenia; male animal mutants have less aggressive behaviours and have olfactory abnormalities. [13]
PPP3CC
PPP3CC is a gene in which mutations are risk factors for schizophrenia; knockout animal models have social deficits. [13]

16p11.2 Duplication

Micro-duplications of a 600 kb region of chromosome 16p11.2 have been associated with a significantly increased risk of schizophrenia. [14] This is a region that is conserved across several species, including mice and rats. This has made it a popular target site for current research into rodent models of schizophrenia.

22q11.2 Deletion

A deletion in chromosome 22q11.2 is the strongest known genetic risk associated with schizophrenia, with 25% of individuals with this deletion ultimately testing positive for schizophrenia. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Phencyclidine</span> Dissociative hallucinogenic drug, mostly used recreationally

Phencyclidine or phenylcyclohexyl piperidine (PCP), also known in its use as a street drug as angel dust among other names, is a dissociative anesthetic mainly used recreationally for its significant mind-altering effects. PCP may cause hallucinations, distorted perceptions of sounds, and violent behavior. As a recreational drug, it is typically smoked, but may be taken by mouth, snorted, or injected. It may also be mixed with cannabis or tobacco.

<span class="mw-page-title-main">Substantia nigra</span> Structure in the basal ganglia of the brain

The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. Substantia nigra is Latin for "black substance", reflecting the fact that parts of the substantia nigra appear darker than neighboring areas due to high levels of neuromelanin in dopaminergic neurons. Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta.

The dopamine hypothesis of schizophrenia or the dopamine hypothesis of psychosis is a model that attributes the positive symptoms of schizophrenia to a disturbed and hyperactive dopaminergic signal transduction. The model draws evidence from the observation that a large number of antipsychotics have dopamine-receptor antagonistic effects. The theory, however, does not posit dopamine overabundance as a complete explanation for schizophrenia. Rather, the overactivation of D2 receptors, specifically, is one effect of the global chemical synaptic dysregulation observed in this disorder.

<span class="mw-page-title-main">Dopamine receptor</span> Class of G protein-coupled receptors

Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS). Dopamine receptors activate different effectors through not only G-protein coupling, but also signaling through different protein interactions. The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors.

<span class="mw-page-title-main">Dizocilpine</span> Chemical compound

Dizocilpine (INN), also known as MK-801, is a pore blocker of the NMDA receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.

<span class="mw-page-title-main">Prepulse inhibition</span>

Prepulse inhibition (PPI) is a neurological phenomenon in which a weaker prestimulus (prepulse) inhibits the reaction of an organism to a subsequent strong reflex-eliciting stimulus (pulse), often using the startle reflex. The stimuli are usually acoustic, but tactile stimuli and light stimuli are also used. When prepulse inhibition is high, the corresponding one-time startle response is reduced.

<span class="mw-page-title-main">Olfactory tubercle</span> Area at the bottom of the forebrain

The olfactory tubercle (OT), also known as the tuberculum olfactorium, is a multi-sensory processing center that is contained within the olfactory cortex and ventral striatum and plays a role in reward cognition. The OT has also been shown to play a role in locomotor and attentional behaviors, particularly in relation to social and sensory responsiveness, and it may be necessary for behavioral flexibility. The OT is interconnected with numerous brain regions, especially the sensory, arousal, and reward centers, thus making it a potentially critical interface between processing of sensory information and the subsequent behavioral responses.

Latent inhibition (LI) is a technical term in classical conditioning, where a familiar stimulus takes longer to acquire meaning than a new stimulus. The term originated with Lubow and Moore in 1973. The LI effect is latent in that it is not exhibited in the stimulus pre-exposure phase, but rather in the subsequent test phase. "Inhibition", here, simply connotes that the effect is expressed in terms of relatively poor learning. The LI effect is extremely robust, appearing in both invertebrate and mammalian species that have been tested and across many different learning paradigms, thereby suggesting some adaptive advantages, such as protecting the organism from associating irrelevant stimuli with other, more important, events.

<span class="mw-page-title-main">Neurotensin</span> Chemical compound

Neurotensin is a 13 amino acid neuropeptide that is implicated in the regulation of luteinizing hormone and prolactin release and has significant interaction with the dopaminergic system. Neurotensin was first isolated from extracts of bovine hypothalamus based on its ability to cause a visible vasodilation in the exposed cutaneous regions of anesthetized rats.

Dopamine receptor D<sub>3</sub> Subtype of Dopamine Receptor

Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene.

<span class="mw-page-title-main">Kalirin</span> Protein-coding gene in the species Homo sapiens

Kalirin, also known as Huntingtin-associated protein-interacting protein (HAPIP), protein duo (DUO), or serine/threonine-protein kinase with Dbl- and pleckstrin homology domain, is a protein that in humans is encoded by the KALRN gene. Kalirin was first identified in 1997 as a protein interacting with huntingtin-associated protein 1. Is also known to play an important role in nerve growth and axonal development.

The glutamate hypothesis of schizophrenia models the subset of pathologic mechanisms of schizophrenia linked to glutamatergic signaling. The hypothesis was initially based on a set of clinical, neuropathological, and, later, genetic findings pointing at a hypofunction of glutamatergic signaling via NMDA receptors. While thought to be more proximal to the root causes of schizophrenia, it does not negate the dopamine hypothesis, and the two may be ultimately brought together by circuit-based models. The development of the hypothesis allowed for the integration of the GABAergic and oscillatory abnormalities into the converging disease model and made it possible to discover the causes of some disruptions.

<span class="mw-page-title-main">Pomaglumetad</span> Drug, used as a treatment for schizophrenia

Pomaglumetad (LY-404,039) is an amino acid analog drug that acts as a highly selective agonist for the metabotropic glutamate receptor group II subtypes mGluR2 and mGluR3. Pharmacological research has focused on its potential antipsychotic and anxiolytic effects. Pomaglumetad is intended as a treatment for schizophrenia and other psychotic and anxiety disorders by modulating glutamatergic activity and reducing presynaptic release of glutamate at synapses in limbic and forebrain areas relevant to these disorders. Human studies investigating therapeutic use of pomaglumetad have focused on the prodrug LY-2140023, a methionine amide of pomaglumetad (also called pomaglumetad methionil) since pomaglumetad exhibits low oral absorption and bioavailability in humans.

<span class="mw-page-title-main">SSR-180,711</span> Chemical compound

SSR180711 is a drug that acts as a potent and selective partial agonist for the α7 subtype of neural nicotinic acetylcholine receptors. In animal studies, it shows nootropic effects and may be useful in the treatment of schizophrenia.

<span class="mw-page-title-main">Sonepiprazole</span> Chemical compound

Sonepiprazole (U-101,387, PNU-101,387-G) is a drug of the phenylpiperazine class which acts as a highly selective D4 receptor antagonist. In animals, unlike D2 receptor antagonists like haloperidol, sonepiprazole does not block the behavioral effects of amphetamine or apomorphine, does not alter spontaneous locomotor activity on its own, and lacks extrapyramidal and neuroendocrine effects. However, it does reverse the prepulse inhibition deficits induced by apomorphine, and has also been shown to enhance cortical activity and inhibit stress-induced cognitive impairment. As a result, it was investigated as an antipsychotic for the treatment of schizophrenia in a placebo-controlled clinical trial, but in contrast to its comparator olanzapine no benefits were found and it was not researched further for this indication.

<span class="mw-page-title-main">Cariprazine</span> Atypical antipsychotic medicine

Cariprazine, sold under the brand names Vraylar, Reagila and Symvenu among others, is an atypical antipsychotic developed by Gedeon Richter, which is used in the treatment of schizophrenia, bipolar mania, bipolar depression, and major depressive disorder. It acts primarily as a D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors, with high selectivity for the D3 receptor. It is taken by mouth.

The causes of schizophrenia that underlie the development of schizophrenia, a psychiatric disorder, are complex and not clearly understood. A number of hypotheses including the dopamine hypothesis, and the glutamate hypothesis have been put forward in an attempt to explain the link between altered brain function and the symptoms and development of schizophrenia.

<span class="mw-page-title-main">F-15063</span> Chemical compound

F-15,063 is an orally active potential antipsychotic, and an antagonist at the D2/D3 receptors, partial agonist at the D4 receptor, and agonist at the 5-HT1A receptors. It has greater efficacy at the 5-HT1A receptors than other antipsychotics, such as clozapine, aripiprazole, and ziprasidone. This greater efficacy may lead to enhanced antipsychotic properties, as antipsychotics that lack 5-HT1A affinity are associated with increased risk of extrapyramidal symptoms, and lack of activity against the negative symptoms of schizophrenia.

<span class="mw-page-title-main">Methylazoxymethanol acetate</span> Chemical compound

Methylazoxymethanol acetate, MAM, is a neurotoxin which reduces DNA synthesis used in making animal models of neurological diseases including schizophrenia and epilepsy. MAM is found in cycad seeds, and causes zamia staggers. It selectively targets neuroblasts in the central nervous system. In rats, administration of MAM affects structures in the brain which are developing most quickly. It is an acetate of methylazoxymethanol.

Xanomeline/trospium, also known under the brand name KarXT, is an investigational oral dual-drug fixed-dose combination of xanomeline and trospium. It is undergoing a phase 3 clinical trial for the treatment of schizophrenia. Xanomeline is a functionally preferring muscarinic M4 and M1 receptor agonist that readily passes into the central nervous system (CNS) to stimulate these receptors in key areas of the brain. Trospium is a non-selective muscarinic antagonist that does not cross into the CNS and reduces peripheral cholinergic side effects associated with xanomeline.

References

  1. 1 2 Blackman, Rachael K.; Macdonald, Angus W.; Chafee, Matthew V. (October 2013). "Effects of ketamine on context-processing performance in monkeys: a new animal model of cognitive deficits in schizophrenia". Neuropsychopharmacology. 38 (11): 2090–2100. doi:10.1038/npp.2013.118. ISSN   1740-634X. PMC   3773669 . PMID   23660706.
  2. 1 2 3 4 5 6 7 8 9 10 Geyer, MA; Moghaddam, B (2002). "Chapter 50: Animal Models Relevant To Schizophrenia Disorders". Neuropsychopharmacology : the fifth generation of progress. American College of Neuropsychopharmacology. ISBN   0781728371. Archived from the original on 2013-10-20. Retrieved 2012-06-11.
  3. 1 2 3 Wilson, C; Terry AV, Jr (Jul 2010). "Neurodevelopmental animal models of schizophrenia: role in novel drug discovery and development". Clinical Schizophrenia & Related Psychoses. 4 (2): 124–37. doi:10.3371/CSRP.4.2.4. PMC   4400734 . PMID   20643635.
  4. Young, JW; Zhou, X; Geyer, MA (2010). "Animal Models of Schizophrenia". Behavioral neurobiology of schizophrenia and its treatment. Heidelberg: Springer. pp. 391–433. ISBN   9783642137167.
  5. Menne, Victoria; Chesworth, Rose (2020-01-16). "Schizophrenia and drug addiction comorbidity: recent advances in our understanding of behavioural susceptibility and neural mechanisms". Neuroanatomy and Behaviour. 2: e10. doi: 10.35430/nab.2020.e10 . ISSN   2652-1768.
  6. Wan, L; Thomas, Z; Pisipati, S; Jarvis, SP; Boutros, NN (April 2017). "Inhibitory deficits in prepulse inhibition, sensory gating, and antisaccade eye movement in schizotypy". International Journal of Psychophysiology. 114: 47–54. doi:10.1016/j.ijpsycho.2017.02.003. PMID   28189549.
  7. Castner, Stacy A.; Goldman-Rakic, Patricia S.; Williams, Graham V. (June 2004). "Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia". Psychopharmacology. 174 (1): 111–125. doi:10.1007/s00213-003-1710-9. ISSN   0033-3158. PMID   15205882. S2CID   22685001.
  8. 1 2 3 4 5 Marcotte, ER; Pearson, DM; Srivastava, LK (November 2001). "Animal models of schizophrenia: a critical review". Journal of Psychiatry & Neuroscience. 26 (5): 395–410. PMC   167198 . PMID   11762207.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Jones, CA; Watson, DJG; Fone, KCF (1 October 2011). "Animal models of schizophrenia". British Journal of Pharmacology. 164 (4): 1162–1194. doi:10.1111/j.1476-5381.2011.01386.x. PMC   3229756 . PMID   21449915.
  10. O'Donnell, P (editor) (2011). Animal models of schizophrenia and related disorders. New York: Humana Press. ISBN   9781617791567.{{cite book}}: |last= has generic name (help)
  11. Hradetzky, Eva; et al. (28 September 2011). "The Methylazoxymethanol Acetate (MAM-E17) Rat Model: Molecular and Functional Effects in the Hippocampus". Neuropsychopharmacology. 37 (2): 364–377. doi:10.1038/npp.2011.219. PMC   3242314 . PMID   21956444.
  12. Sawa, Akira, ed. (2009). Genetic models of schizophrenia (1st ed.). Amsterdam: Elsevier Science. ISBN   9780444534309.
  13. 1 2 3 O'Tuathaigh, CM; Kirby, BP; Moran, PM; Waddington, JL (Mar 2010). "Mutant mouse models: genotype–phenotype relationships to negative symptoms in schizophrenia". Schizophrenia Bulletin. 36 (2): 271–88. doi:10.1093/schbul/sbp125. PMC   2833123 . PMID   19934211.
  14. McCarthy, Shane E.; Makarov, Vladimir; Kirov, George; Addington, Anjene M.; McClellan, Jon; Yoon, Seungtai; Perkins, Diana O.; Dickel, Diane E.; Kusenda, Mary; Krastoshevsky, Olga; Krause, Verena; Kumar, Ravinesh A.; Grozeva, Detelina; Malhotra, Dheeraj; Walsh, Tom (November 2009). "Microduplications of 16p11.2 are associated with schizophrenia". Nature Genetics. 41 (11): 1223–1227. doi:10.1038/ng.474. ISSN   1546-1718. PMC   2951180 . PMID   19855392.
  15. Van, Lily; Boot, Erik; Bassett, Anne S. (May 2017). "Update on the 22q11.2 deletion syndrome and its relevance to schizophrenia". Current Opinion in Psychiatry. 30 (3): 191–196. doi:10.1097/YCO.0000000000000324. ISSN   1473-6578. PMID   28230630. S2CID   2026063.