Apoica pallens

Last updated

Apoica pallens
Apoica pallens 60471089.jpg
A. pallens observed in Panama
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Vespidae
Subfamily: Polistinae
Tribe: Epiponini
Genus: Apoica
Species:
A. pallens
Binomial name
Apoica pallens
(Fabricius, 1804)
Synonyms [1]
  • Polistes pallensFabricius, 1804

The Central American paper wasp (Apoica pallens) is a nocturnal eusocial wasp (family Vespidae). It is famous for its swarm based emigration behavior, and is native to the lowlands of Central and northern South America. [2] This species has developed special night vision adaptations to facilitate their night-time swarming and foraging behavior [3] and has important medicinal properties for the Pankararú people of Brazil. [4]

Contents

Taxonomy and phylogenetics

Apoica pallens is part of the tribe Epiponini, a group including paper wasps found in neotropical regions. [5] Apoica is one of the basal genera in the tribe. The species is most closely related to Apoica flavissima . [6] Apoica pallens was described by Johan Christian Fabricius in 1804. [7]

Description and identification

Apoica pallens adult female Apoica pallens %3F Nocturnal Paper Wasp. (7420612738).jpg
Apoica pallens adult female

Apoica pallens is pale yellow in color. [8] Like other species found within the Epiponini, there is morphological caste differentiation between workers and queens. [9] In Apoica pallens, queens and workers are usually about the same total size, but queens tend to be smaller than workers anteriorly and significantly larger posteriorly. This differentiation is thought to be the result of differences in ovary development. [10]

Nest Identification

Colony Apoica pallens colony, Panama.jpg
Colony

Nests of Apoica have no enclosing envelope and are composed of a single comb that hangs under the branch. [11] The large nests have a distinctive appearance similar to a straw hat or basket. [12]

Distribution and habitat

Apoica pallens populations are native to the lowlands of Central and northern South America. Generally, they are found in areas of tropical savanna, semi deciduous tropical dry forest, gallery forest, and marsh land. [2] Apoica is one of the prominent genera of the New World Tropics, and is rather abundant. [9]

Colony cycle

Apoica pallens is best known for its unique swarm founding behavior, in which the adult population of a colony abandons an old nest and emigrates to a new site. [9] This has been observed for several reasons. Firstly, as part of normal colony reproduction. And secondly, in response to severe disturbance or destruction of the original nest. [9] Additionally, nest abandonment is sometimes correlated with changing climates, and in the case of Apoica pallens, has been observed more frequently during the dry season. [12] Males follow swarm emigrations and may remain with the newly created colony for the following weeks. [13]

Epiponini are either permanently polygynous or primarily polygynous. In the latter case, queen numbers decrease during the colony cycle which can result in monogyny. [14] Therefore, kinship is considered an important theory for explaining cooperation within the Epiponini tribe.

Behavior

Foraging

Foraging takes place almost exclusively at night. It is characterized by large numbers of wasps explosively departing from the nest, then quickly returning only to depart again in a similar fashion. [12] As the night progresses there are moderate to heavy levels of return and departures by smaller groups of wasps. The foraging patterns of Apoica pallens are dependent on the moon's cycle: when the moon is new or small, Apoica pallens forages during the first 4 hours after sunset, with another small peak of activity just before dawn as wasps return to the nest. When the moon is waxing, Apoica pallens extends the hours that it forages until individuals are out all night long. [8]

Over time, Apoica pallens have developed adaptations that have enhanced their vision allowing them to forage in these low light intensity conditions. These wasps have larger visual fields compared to those of relatives due to a greater diameter of the rhabdom, [3] a rodlike structure in the eye that is sensitive to light. [15] A. pallens also have increased number of facets instead of larger facets of the eye, which has increased its relative eye size. Although these features help increase the wasp's nocturnal vision, other factors not widely studied also contribute, such as the lateral branching of neurons in the first optic ganglion within the eye. [3]

Dominance hierarchy

Apoica pallens is a caste species with morphological differentiation between females. These castes are classified as workers and queens, and this morphological distinction is based on the size of ovaries. [10] This special morphology contributes to the reproductive abilities of the queens. The differences between the castes of queens and workers are formed during the larval stage. Queen-destined larvae show faster growth rates in various bodily compartments than worker-destined larvae. This results in individuals with different shapes even though larvae are about the same size. [16]

Communication

Swarming wasps of the genus Epiponini generally place scent-markings on surfaces around the nest during the formation of swarm clusters. [12] A. pallens, however, has a different mode of communication. Apoica has the Richards' Gland, an endocrine gland that is mechanistically important in signaling swarming. but apparently does not employ it during swarming. [17] Apoica pallens appears to coordinate swarming using an airborne pheromone released from the lower side of the abdomen. [13]

Calling behavior is characterized by the gaster being held rigidly away from the thorax, [12] thus exposing the sternal glands. The exposure of these chemical releasing glands has led to the hypothesis that this calling behavior releases airborne pheromones that signal to swarm members, so they know to begin the migration. [12] [13]

Kin selection

The polygeny exhibited in Apoica pallens is a potential conflict of interest within colonies. This would seem to lead to relatively low relatedness between individuals within a colony, and therefore the incentive to protect shared genes would also be reduced. However, relatedness between individuals in colonies of Epiponini shows that kinship is actually rather high. [14] The reasoning behind this is that as colonies become more developed the number of queens is reduced, and the relatedness between mothers and daughters increases. Therefore, kinship is considered an important theory for explaining cooperation within the Epiponini tribe.

Costs and benefits of sociality

An interesting aspect of the genus Apocia is that while it is described as highly social, it has fewer caste differences than other genera of highly social wasp species. [16] This is likely because this genus' morphological caste differentiation was a secondary evolutionary step in sociality, representing a switch between size differentiation between castes to morphological differentiation between castes. [16] The highly structured social nature of this species contributes to the advantages of social behaviors such as their distinctive swarm founding [9] and physical nest defense. [18]

Worker-queen conflict

In Apoica pallens, the nature of queen–worker morphological differences is determined at the larval stage. Queen larvae have different growth rates of various bodily compartments compared to larvae that will become workers. This generates castes based on different morphologies, rather than based on different sizes. [16] Polygyny in Epiponini has no intolerant primary egglayer queen. Instead reproduction is performed by several tolerant female queens. [14] The queens participate in a society of inclusive fitness rather than in a struggle for direct fitness. [16] The role of policing is adopted by sterile workers, who select among the queen larvae. [14] Due to this system, there is in fact minimal conflict between the two castes. [16]

Human importance

Uses in folk medicine

Folk medicine is prominent in various areas of Brazil. The incorporation of insects into folk remedies is common, and specific insects serve distinct purposes. Medicinal insects are the focus of certain healing methods targeted to treat ailments, serving as drug resources that come from nature. The nests of Apoica pallens, in particular, is known to be significant in the practices of the indigenous Pankarare and also the rural people of Brazil. Nests of these wasps are burned and the smoke released is inhaled in order to heal stroke. Furthermore, when the presence of evil is suspected in a native's life, they must bath in this smoke of the burning nest as treatment. In Matinha dos Pretos, pieces of the nest can also be boiled in water to make a tea that serves as treatment for asthma. [4]

Interaction with other species

Apoica pallens arranged on the comb face exhibiting passive defense. Apoica pallens 002 by Alex Popovkin.jpg
Apoica pallens arranged on the comb face exhibiting passive defense.

Diet

Apoica pallens has been found to collect various arthropods including flies, caterpillars, and beetles. [12] It also collects pollen and nectar from banana blossoms. In addition, this species practices brood cannibalism, where the adults will eat some of the brood if their own nutritional needs are not met. Generally, several adults will divide up a single larva. [12] In addition, adults will exchange food via trophallaxis. [12]

Defense

Apoica pallens displays active, rather than chemical defense behavior. During the day, when adult individuals are not participating in swarming behavior, they cover the comb face of the nest several layers thick. The wasps on the outer layer of the comb face outward. This leaves them vigilant to the approach of predatory ants trying to reach the interior of the nest. [18] This is thought to be a more passive defense than an active one, since the presence of the adults in this formation is in and of itself a deterrent to parasites and predators. It has also been hypothesized that the advantages of this protective formation during the daylight hours are what led to the selection of the nocturnal foraging and swarming behavior seen in this species. [12]

Related Research Articles

<span class="mw-page-title-main">Polistinae</span> Subfamily of insects

The Polistinae is a subfamily of eusocial wasps belonging to the family Vespidae. They are closely related to the wasps and true hornets of the subfamily Vespinae, containing four tribes. With about 1,100 species total, it is the second-most diverse subfamily within the Vespidae, and while most species are tropical or subtropical, they include some of the most frequently encountered large wasps in temperate regions.

<i>Brachygastra</i> Genus of wasps

Honey wasps are species in the genus Brachygastra of the family Vespidae. Brachygastra comprises 17 species of social paper wasps. The ancestral species are thought to have diverged about 32 million years ago within diverse Amazonian rainforest. Subsequent speciation within the genus is thought to have mostly occurred between 23 Ma and 10 Ma, during the time of the Andean uplift when the landscape was significantly altered due to tectonic activity. The current cladistic organisation of the genus has been heavily reliant on morphological characteristics.

Apoica flavissima is a paper wasp found primarily in South America. The species is distinguishable by its light coloring, unique single comb nests, and nocturnal nature. A notable feature of this species is the size dimorphism between queens and workers. Unlike most Vespidae wasps, Apocia flavissima queens are smaller than their worker counterparts which results in unique intraspecies relationships.

Brachygastra lecheguana, formerly known as Nectarina lecheguana, is a species of dark paper wasp found across North and South America. It nests in underbrush in grassland-type environments, and produces honey, characteristic of the genus Brachygastra.

<i>Agelaia vicina</i> Species of wasp

Agelaia vicina is a species of wasp in the genus Agelaia. They are neotropical social wasps known to have the largest colony sizes and nest sizes among social wasps, with some colonies exceeding over one million individuals. They are predators of land arthropods, consuming both insects and spiders alike. Recent sperm morphology studies have shown that although Vespidae belong to the superfamily Vespoidea, A. vicina may be more phylogenetically related to Apoidea.

<i>Synoeca cyanea</i> Species of wasp

Synoeca cyanea, commonly known as the marimbondo-tatu in Brazil, is a swarm-founding eusocial wasp. Native to Brazil and Argentina, S. cyanea is one of the largest and most aggressive species of social wasps and is feared in many rural areas. It begins its colony cycle in the early spring and continues until nest abandonment. Throughout its life, S. cyanea forage sugary substances and animal carcasses for food and wood pulp for its nest. S. cyanea is also known for its strong venom, which is enough to cause haemolytic activity.

<i>Angiopolybia pallens</i> Species of wasp

Angiopolybia pallens is a species of social wasp predominantly found in South America. The wasp is generally seen in Brazilian rainforests. This species was discovered by Lepeletier in 1836. It typically feeds on nectar and carrion. In fact much of its feeding behavior and impact on humans is centered on feeding on animal carcasses. The wasp species displays a caste differentiation that can be seen by difference in ovarian development. Additionally they have a unique colony establishment procedure. It begins with a few individuals from the nest leaving to find a good site and then the rest of the colony follows using specific communication signals that are further discussed in this article.

<i>Agelaia pallipes</i> Species of wasp

Agelaia pallipes is a species of social paper wasp found from Costa Rica to Brazil, Argentina and Paraguay. A. pallipes is ground-nesting and is one of the most aggressive wasps in South America. This species is a predator of other insects, including flies, moths, and ground crickets, as well as baby birds.

<i>Leipomeles dorsata</i> Species of wasp

Leipomeles dorsata is a neotropical paper wasp that is found across Central America and northern South America. It is a eusocial wasp with little differentiation between reproducing and non-reproducing females. In fact, workers can become temporary reproductives if the main reproductives are killed, allowing reproduction to continue until the main reproductive population recovers. The colony cycles through different ratios of main reproductive females and subordinate reproductive females, starting with few or no primary reproducing females, and increasing until there are only main reproductives.

Protopolybia exigua is a species of vespid wasp found in South America and Southern Brazil. These neotropical wasps, of the tribe Epiponini, form large colonies with multiple queens per colony. P. exigua are small wasps that find nourishment from nectar and prey on arthropods. Their nests are disc-shaped and hang from the undersides of leaves and tree branches. This particular species of wasp can be hard to study because they frequently abandon their nests. P. exigua continuously seek refuge from phorid fly attacks and thus often flee infested nests to build new ones. The wasps' most common predators are ants and the parasitoid phorid flies from the Phoridae family.

<i>Polybia sericea</i> Species of wasp

Polybia sericea is a social, tropical wasp of the family Vespidae that can be found in South America. It founds its colonies by swarming migrations, and feeds on nectar and arthropods.

<i>Ropalidia romandi</i> Species of wasp

Ropalidia romandi, also known as the yellow brown paper wasp or the yellow paper wasp. is a species of paper wasp found in Northern and Eastern Australia. R. romandi is a swarm-founding wasp, and manages perennial nests. Its nests are known as 'paper bag nests' and have different architectural structures, depending on the substrates from which they are built. The specific name honors Gustave, baron de Romand, a prominent French political figure and amateur entomologist.

<i>Synoeca surinama</i> Species of wasp

Synoeca surinama is a Neotropical swarm-founding wasp of the tribe Epiponini. It is known for its metallic blue and black appearance and painful sting. S. surinama builds nests on tree trunks and can be found in tropical climates of South America. When preparing to swarm, there are a number of pre-swarming behaviors that members of S. surinama colonies partake in, such as buzzing runs and occasional brood cannibalism. In S. surinama, social environmental conditions determine the caste ranks of individuals in the developing brood. Unlike less primitive Hymenoptera species, S. surinama display little morphological variation between egg laying queens and workers. S. surinama wasps visit flowering plants and are considered pollinators. When these wasps sting, the stinger is left in the victim and the wasp ultimately dies.

Parachartergus fraternus is a neotropical, swarm founding, polistine wasp species that is distributed throughout Central and South America. They live in nests in second growth tropical dry forests, near pasture fields, roadside areas, and urban areas as well. These wasps eat insects, such as caterpillars of Lepidoptera. They also drink nectar, honeydew, and water. The workers capture their prey during foraging. They also use venom to paralyze their prey in order to consume it later. P. fraternus wasps are not very aggressive and they do not attack when the nest is approached.

<i>Synoeca septentrionalis</i> Species of stinging wasp

Synoeca septentrionalis is one of five species of wasps in the genus Synoeca. It is a swarm-founding wasp that is also eusocial, exhibiting complicated nest structure and defense mechanisms and a colony cycle including a pre-emergence phase and a post-emergence phase. It is typically found in areas from Central to South America. This wasp is one of the larger species of paper wasps and exhibits multiple morphological adaptations as a result of this. Synoeca septentrionalis is known for possessing a very painful sting.

<i>Agelaia multipicta</i> Species of wasp

Agelaia multipicta is a swarm-founding, highly eusocial wasp that lives in Mexico, Argentina, Trinidad and southern Brazil. It nests in natural cavities such as hollow trees and aggressively defends the nest from ants, who are brood predators. The workers and queens are morphologically distinguished by ovarian development as well as external features such as a larger petiole and gaster in the queen. Like other carrion-eating (necrophagous) wasp species, A. multipicta plays a scavenging role in the ecosystem. Agelaia multipicta was described by the Irish entomologist Alexander Henry Haliday in 1836.

Brachygastra scutellaris, a honey wasp, is a Neotropical, swarm-founding species that is found in South America and has a medium-sized population of 100-1000 individuals per colony. It stores large amounts of nectar in its nest for the production of honey, and it was even found that at certain times of the year, the nectar is toxic to humans, as they will extract nectar from hallucinogenic plants, depending on the season.

Protopolybia chartergoides, also known as Pseudochartergus chartergoides, is a species of wasp within the genus Protopolybia. It is a social wasp found in southern Central America and northern South America.

<i>Polybia paulista</i> Species of wasp

Polybia paulista is a species of eusocial wasp occurring in Brazil, Paraguay, and Argentina.

<i>Parachartergus</i> Genus of wasps

Parachartergus is a genus of epiponine social wasps belonging to the subfamily Polistinae. Species include:

References

  1. James M. Carpenter. "Tentative Checklist of the Polistine Tribe Epiponini". IUNH. Archived from the original on 29 December 2017. Retrieved 2 May 2017.
  2. 1 2 Richards, O.W. (1978), The Social Wasps of the Americas Excluding the Vespinae, British Museum (Natural History), London.
  3. 1 2 3 Greiner, B. (2006). "Visual adaptations in the night-active wasp Apoica pallens" (PDF). The Journal of Comparative Neurology. 495 (3): 255–262. doi:10.1002/cne.20882. PMID   16440299. S2CID   39534847.
  4. 1 2 Medeiros Costa-Neto, Eraldo (June 2002). "Visual adaptations in the night-active wasp Apoica pallens". Human Evolution. 30 (2): 245–263.
  5. Carpenter, James M. (1999), Taxonomic Notes on Paper Wasps (Hymenoptera: Vespidae: Polistinae) (PDF), American Museum of Natural History
  6. Arévalo, Elisabeth; Yong Zhu; James M Carpenter; Joan E Strassmann (2004), "The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters", BMC Evolutionary Biology, 4: 8, doi: 10.1186/1471-2148-4-8 , PMC   385225 , PMID   15070433
  7. Vespidae, 1857, British Museum (Natural History). Dept. of Zoology, 1857
  8. 1 2 Warrant, Eric J. (2008), "Seeing in the dark: vision and visual behaviour in nocturnal bees and wasp", The Journal of Experimental Biology, 211 (11): 1737–1746, doi:10.1242/jeb.015396, PMID   18490389
  9. 1 2 3 4 5 Jeanne, R. L. 1991. The swarm-founding Polistinae. In: K. G. Ross & R. W. Matthews (eds.), The Social Biology of Wasps. Ch 6, pp. 191–231. Cornell University Press, Ithaca, New York
  10. 1 2 Jeanne, R.L.; C.A. Graf; B.S. Yandell (1995). "Non-Size-Based Morphological Castes in a Social Insect". Naturwissenschaften. 82 (6): 296. Bibcode:1995NW.....82..296J. doi:10.1007/BF01134530. S2CID   35999269.
  11. Richards, O.W.; M.J. Richards (1951), "Observations on the social wasps of South America (Hymenoptera Vespidae).", Trans. R. Ent. Soc. Lond., vol. 102, pp. 1–169, doi:10.1111/j.1365-2311.1951.tb01241.x
  12. 1 2 3 4 5 6 7 8 9 10 Hunt, J.H.; R.L. Jeanne; M. G. Keeping (1995). "Observations on Apoica pallens, a nocturnal Neotropical socialwasp (Hymenoptera: Vespidae, Polistinae, Epiponini)". Insectes Sociaux. 42 (3): 223–236. doi:10.1007/BF01240417. S2CID   37444801.
  13. 1 2 3 Howard, K.J.; A.R. Smith; S. O'Donell; R.L. Jeanne (2002), Ethology Ecology & Evolution
  14. 1 2 3 4 Noll, F.B. (2013). ""Marimbondos": a review on the neotropical swarm-founding polistines". Sociobiology. 60 (4): 347–353. doi: 10.13102/sociobiology.v60i4.347-353 . hdl: 11449/111618 .
  15. "rhabdom". Biology. Oxford Dictionary. Archived from the original on November 8, 2012. Retrieved 2014-09-29.
  16. 1 2 3 4 5 6 Noll, Fernandao.B.; John W. Wenzel; Ronaldo Zucchi (2004). "Evolution of Caste in Neotropical Swarm-Founding Wasps(Hymenoptera: Vespidae; Epiponini)" (PDF). American Museum Novitates (467): 1. doi:10.1206/0003-0082(2004)467<0001:EOCINW>2.0.CO;2. hdl:2246/2777. S2CID   53405385.
  17. Smith, Adam.R.; Sean O’Donnell; Robert L. Jeanne (2002). "Evolution of Swarm Communication in Eusocial Wasps (Hymenoptera: Vespidae)". Journal of Insect Behavior. 15 (6): 751–764. doi:10.1023/A:1021119322398. S2CID   19462645.
  18. 1 2 London, K.B; R.L. Jeanne (2000). "The interaction between mode of colony founding, nest architecture and ant defense in polistine wasps". Ethology Ecology & Evolution. 12: 13–25. doi:10.1080/03949370.2000.9728440. S2CID   83819136.