Articulation of head of rib

Last updated
Articulation of head of rib
Gray312.png
The articulation of head of rib seen from the front
Gray90.png
Human thoracic vertebra. Notice the articulations for the ribs
Details
Identifiers
Latin articulatio capitis costae
TA98 A03.3.04.002
TA2 1721
FMA 7951
Anatomical terminology

The articulations of the heads of the ribs (or costocentral articulations) constitute a series of gliding or arthrodial joints, and are formed by the articulation of the heads of the typical ribs with the costal facets on the contiguous margins of the bodies of the thoracic vertebrae and with the intervertebral discs between them; the first, eleventh and twelfth ribs each articulate with a single vertebra.

Two convex facets from the head attach to two adjacent vertebrae, at the inferior costal facet of the superior vertebra, and the superior costal facet of the inferior vertebra respectively. This forms the synovial planar (gliding) joint.

The ligaments of the joints are:

Additional images

Related Research Articles

<span class="mw-page-title-main">Rib</span> Long bone in vertebrates that protects vital respiratory and cardiovascular organs

In vertebrate anatomy, ribs are the long curved bones which form the rib cage, part of the axial skeleton. In most tetrapods, ribs surround the chest, enabling the lungs to expand and thus facilitate breathing by expanding the chest cavity. They serve to protect the lungs, heart, and other internal organs of the thorax. In some animals, especially snakes, ribs may provide support and protection for the entire body.

<span class="mw-page-title-main">Atlas (anatomy)</span> First cervical vertebra of the spine which supports the skull

In anatomy, the atlas (C1) is the most superior (first) cervical vertebra of the spine and is located in the neck.

<span class="mw-page-title-main">Rib cage</span> Bone structure that protects the vital organs and major blood vessels

The rib cage is an endoskeletal enclosure in the thorax of most vertebrate animals that comprises the ribs, vertebral column and sternum, which protects vital organs such as the heart, lungs and great vessels. The circumferential enclosure formed by left and right rib cages, together known as the thoracic cage, is a semi-rigid bony and cartilaginous structure which surrounds the thoracic cavity and supports the shoulder girdles to form the core part of the axial skeleton.

<span class="mw-page-title-main">Sacrum</span> Triangular-shaped bone at the bottom of the spine

The sacrum, in human anatomy, is a large, triangular bone at the base of the spine that forms by the fusing of the sacral vertebrae (S1–S5) between ages 18 and 30.

<span class="mw-page-title-main">Lumbar vertebrae</span> Five vertebrae between the pelvis and the rib cage

The lumbar vertebrae are, in human anatomy, the five vertebrae between the rib cage and the pelvis. They are the largest segments of the vertebral column and are characterized by the absence of the foramen transversarium within the transverse process and by the absence of facets on the sides of the body. They are designated L1 to L5, starting at the top. The lumbar vertebrae help support the weight of the body, and permit movement.

<span class="mw-page-title-main">Axis (anatomy)</span> Second cervical vertebra of the spine

In anatomy, the axis is the second cervical vertebra (C2) of the spine, immediately inferior to the atlas, upon which the head rests.

<span class="mw-page-title-main">Cervical vertebrae</span> Vertebrae of the neck

In tetrapods, cervical vertebrae are the vertebrae of the neck, immediately below the skull. Truncal vertebrae lie caudal of cervical vertebrae. In sauropsid species, the cervical vertebrae bear cervical ribs. In lizards and saurischian dinosaurs, the cervical ribs are large; in birds, they are small and completely fused to the vertebrae. The vertebral transverse processes of mammals are homologous to the cervical ribs of other amniotes. Most mammals have seven cervical vertebrae, with the only three known exceptions being the manatee with six, the two-toed sloth with five or six, and the three-toed sloth with nine.

<span class="mw-page-title-main">Thoracic vertebrae</span> Vertebrae between the cervical vertebrae and the lumbar vertebrae

In vertebrates, thoracic vertebrae compose the middle segment of the vertebral column, between the cervical vertebrae and the lumbar vertebrae. In humans, there are twelve thoracic vertebrae and they are intermediate in size between the cervical and lumbar vertebrae; they increase in size going towards the lumbar vertebrae, with the lower ones being much larger than the upper. They are distinguished by the presence of facets on the sides of the bodies for articulation with the heads of the ribs, as well as facets on the transverse processes of all, except the eleventh and twelfth, for articulation with the tubercles of the ribs. By convention, the human thoracic vertebrae are numbered T1–T12, with the first one (T1) located closest to the skull and the others going down the spine toward the lumbar region.

<span class="mw-page-title-main">Subtalar joint</span>

In human anatomy, the subtalar joint, also known as the talocalcaneal joint, is a joint of the foot. It occurs at the meeting point of the talus and the calcaneus.

<span class="mw-page-title-main">Costal cartilage</span> Resilient, smooth, glass-like tissue at the front ends of ribs in verterbrates

The costal cartilages are bars of hyaline cartilage that serve to prolong the ribs forward and contribute to the elasticity of the walls of the thorax. Costal cartilage is only found at the anterior ends of the ribs, providing medial extension.

<span class="mw-page-title-main">Articular process</span> Projections of the vertebra

The articular process or zygapophysis of a vertebra is a projection of the vertebra that serves the purpose of fitting with an adjacent vertebra. The actual region of contact is called the articular facet.

<span class="mw-page-title-main">Talocalcaneonavicular joint</span>

The talocalcaneonavicular joint is a ball and socket joint; the rounded head of the talus is received into the concavity formed by the posterior surface of the navicular, the anterior articular surface of the calcaneus, and the upper surface of the plantar calcaneonavicular ligament.

<span class="mw-page-title-main">Radiate ligament of head of rib</span>

The radiate ligament of head of rib is a ligament of the costovertebral joint that typically connects the anterior edge of the head of each rib, and the side of the bodies of two adjacent vertebrae and their intervertebral discs. The ligament is formed as a thickening of the anterior portion of the joint capsule of the costovertebral joint, and thus reinforces it anteriorly.

<span class="mw-page-title-main">Inferior costal facet</span>

The inferior costal facet is a site where a rib forms a joint with the inferior aspect of the body of a thoracic vertebra.

<span class="mw-page-title-main">Superior costal facet</span>

The superior costal facet is a site where a rib forms a joint with the top of a vertebra.

A costal facet is a site of connection between a rib and a vertebra. The costal facets are located on the vertebrae that the rib articulates with. They are the superior costal facet, the inferior costal facet, and the transverse costal facet. Rib 1 only articulates with a transverse costal facet.

<span class="mw-page-title-main">Intra-articular ligament of head of rib</span>

The intra-articular ligament of head of rib is a ligament of the articulation of head of rib situated within the joint capsule. It takes the shape of a short, flat band. It joins the crest of head of rib, and the intervertebral disc. It is absent in ribs I and X-XII.

<span class="mw-page-title-main">Costotransverse joint</span>

The costotransverse joint is the joint formed between the facet of the tubercle of the rib and the adjacent transverse process of a thoracic vertebra. The costotransverse joint is a plane type of synovial joint which, under physiological conditions, allows only gliding movement.

<span class="mw-page-title-main">Cricothyroid joint</span> Joint connecting the cricoid cartilage and the thyroid cartilage in the throat

The cricothyroid joint is a joint connecting the cricoid cartilage and the thyroid cartilage. It plays a key role in adjusting human voice pitch by changing the tension of the vocal cords. This tension is controlled mostly by the endolaryngeal vocalis and the extralaryngeal cricothyroid muscles which change vocal fold tension by narrowing the cricothyroid space created by rotation and gliding movements in horizontal and vertical direction allowed for by the cricothyroid articulation.

<span class="mw-page-title-main">Vertebra</span> Bone in the vertebral column

Each vertebra is an irregular bone with a complex structure composed of bone and some hyaline cartilage, that make up the vertebral column or spine, of vertebrates. The proportions of the vertebrae differ according to their spinal segment and the particular species.

References

PD-icon.svgThis article incorporates text in the public domain from page 299 of the 20th edition of Gray's Anatomy (1918)