Developer(s) | Ramesh Dhungel and group |
---|---|
Written in | Python (programming language), shell script, GDAL, numpy |
Operating system | Microsoft Windows |
Type | Evapotranspiration modeling, irrigation simulation, surface temperature simulation, soil moisture simulation, Geographic information system |
BAITSSS (Backward-Averaged Iterative Two-Source Surface temperature and energy balance Solution) is biophysical Evapotranspiration (ET) computer model that determines water use, primarily in agriculture landscape, using remote sensing-based information. [1] It was developed and refined by Ramesh Dhungel and the water resources group at University of Idaho's Kimberly Research and Extension Center since 2010. It has been used in different areas in the United States including Southern Idaho, Northern California, northwest Kansas, Texas, and Arizona.
BAITSSS originated from the research of Ramesh Dhungel, a graduate student at the University of Idaho, [2] who joined a project called "Producing and integrating time series of gridded evapotranspiration for irrigation management, hydrology and remote sensing applications" under professor Richard G. Allen. [3]
In 2012, the initial version of landscape model was developed using the Python IDLE environment using NARR weather data (~ 32 kilometers). [1] Dhungel submitted his PhD dissertation in 2014 where the model was called BATANS (backward averaged two source accelerated numerical solution). [1] [2] The model was first published in Meteorological Applications journal in 2016 under the name BAITSSS as a framework to interpolate ET between the satellite overpass when thermal based surface temperature is unavailable. [1] The overall concept of backward averaging was introduced to expedite the convergence process of iteratively solved surface energy balance components which can be time-consuming and can frequently suffer non-convergence, especially in low wind speed. [1]
In 2017, the landscape BAITSSS model was scripted in Python shell, together with GDAL and NumPy libraries using NLDAS weather data (~ 12.5 kilometers). [1] The detailed independent model was evaluated against weighing lysimeter measured ET, infrared temperature (IRT) and net radiometer of drought-tolerant corn and sorghum at Conservation and Production Research Laboratory in Bushland, Texas by group of scientists from USDA-ARS and Kansas State University between 2017 and 2020. [1] Some later development of BAITSSS includes physically based crop productivity components, i.e. biomass and crop yield computation. [1] [4] [5]
The majority of remote sensing based instantaneous ET models use evaporative fraction (EF) or reference ET fraction (ETrF), similar to crop coefficients, for computing seasonal values, these models generally lack the soil water balance and Irrigation components in surface energy balance. [1] Other limiting factors is the dependence on thermal-based radiometric surface temperature, which is not always available at required temporal resolution and frequently obscured by factors such as cloud cover. [1] [6] BAITSSS was developed to fill these gaps in remote sensing based models liberating the use of thermal-based radiometric surface temperature and to serve as a digital crop water tracker simulating high temporal (hourly or sub-hourly) and spatial resolution (30 meter) ET maps. [1] [7] [8] BAITSSS utilizes remote sensing based canopy formation information, i.e. estimation of seasonal variation of vegetation indices and senescence. [1]
Surface energy balance is one of the commonly utilized approaches to quantify ET (latent heat flux in terms of flux), where weather variables and vegetation Indices are the drivers of this process. BAITSSS adopts numerous equations to compute surface energy balance and resistances where primarily are from Javis, 1976, [9] Choudhury and Monteith, 1988, [10] and aerodynamic methods or flux-gradient relationship equations [11] [12] with stability functions associated with Monin–Obukhov similarity theory.
Latent heat flux (LE)
The aerodynamic or flux-gradient equations of latent heat flux in BAITSSS are shown below. is saturation vapor pressure at the canopy and is for soil, is ambient vapor pressure, rac is bulk boundary layer resistance of vegetative elements in the canopy, rah is aerodynamic resistance between zero plane displacement (d) + roughness length of momentum (zom) and measurement height (z) of wind speed, ras is the aerodynamic resistance between the substrate and canopy height (d +zom), and rss is soil surface resistance. [1]
Sensible heat flux (H) and surface temperature calculation [1]
The flux-gradient equations of sensible heat flux and surface temperature in BAITSSS are shown below.
Canopy resistance (rsc)
Typical Jarvis type-equation of rsc adopted in BAITSSS is shown below, Rc-min is the minimum value of rsc, LAI is leaf area index, fc is fraction of canopy cover, weighting functions representing plant response to solar radiation (F1), air temperature (F2), vapor pressure deficit (F3), and soil moisture (F4) each varying between 0 and 1. [1]
Standard soil water balance equations for soil surface and the root zone are implemented in BAITSSS for each time step, where irrigation decisions are based on the soil moisture at the root zone. [1]
ET models, in general, need information about vegetation (physical properties and vegetation indices) and environment condition (weather data) to compute water use. Primary weather data requirements in BAITSSS are solar irradiance (Rs↓), wind speed (uz), air temperature (Ta), relative humidity (RH) or specific humidity (qa), and precipitation (P). Vegetation indices requirements in BAITSSS are leaf area index (LAI) and fractional canopy cover (fc), generally estimated from normalized difference vegetation index (NDVI). Automated BAITSSS [1] can compute ET throughout United States using National Oceanic and Atmospheric Administration (NOAA) weather data (i.e. hourly NLDAS: North American Land Data Assimilation system at 1/8 degree; ~ 12.5 kilometers), Vegetation indices those acquired by Landsat, and soil information from SSURGO.
BAITSSS generates large numbers of variables (fluxes, resistances, and moisture) in gridded form in each time-step. The most commonly used outputs are evapotranspiration, evaporation, transpiration, soil moisture, irrigation amount, and surface temperature maps and time series analysis.
Feature | Description |
---|---|
Two-source energy balance | BAITSSS is a two-source energy balance model (separate soil and canopy section) which is integrated by fraction of vegetation cover (fc) based on vegetation indices. |
Two-layers soil water balance | BAITSSS simulates soil surface moisture (θsur) and root zone moisture (θroot) layers are related to the dynamics of evaporative (Ess) and transpirative (T) flux. Capillary rise (CR) from the layer below root zone into the root zone layer is neglected. The soil moisture at both layers is restricted to field capacity (θfc). |
Surface temperature | BAITSSS iteratively solves surface temperature inverting flux-gradient equations of H at the soil surface (subscript s) (Ts) and canopy level (subscript c) (Tc) for each time step using continuous weather variables and surface roughness defined by vegetation Indices. |
Ground heat flux of soil | BAITSSS estimates ground heat flux (G) of soil surface based on sensible heat flux (Hs) or net radiation (Rn_s) of soil surface and neglects G on vegetated surface. |
Transpiration | Variable canopy conductance in terms of canopy resistance (rsc), based on the Jarvis-type algorithm is used to compute transpiration. |
Evaporation | Evaporation (Ess) in BAITSSS is computed based on soil resistance (rss) and soil water content in soil surface layer (upper 100 millimeters of soil water balance). |
Irrrigation | BAITSSS simulates irrigation (Irr) in agricultural landscapes [13] [14] by mimicking a tipping-bucket approach (applied to surface as sprinkler or sub-surface layer as drip), using Management Allowed Depletion (MAD), and soil water content regimes at rooting depth (lower 100-2000 millimeters of soil layer). |
Biomass and Yield | BAITSSS computes above biomass from transpiration efficiency normalized by vapor pressure deficit and grain fraction by empirical function of biomass. |
BAITSSS was implemented to compute ET in southern Idaho for 2008, and in northern California for 2010. [1] It was used to calculate corn and sorghum ET in Bushland, Texas for 2016, and multiple crops in northwest Kansas for 2013–2017. [1] [15] [16] [4] BAITSSS has been widely discussed among the peers around the world, including Bhattarai et al. in 2017 and Jones et al. in 2019. [17] United States Senate Committee on Agriculture, Nutrition and Forestry listed BAITSSS in its climate change report. [18] BAITSSS was also covered by articles in Open Access Government, [6] [19] Landsat science team, [20] Grass & Grain magazine, [21] National Information Management & Support System (NIMSS), [22] terrestrial ecological models, [23] key research contribution related to sensible heat flux estimation and irrigation decision in remote sensing based ET models. [24] [25]
In September 2019, the Northwest Kansas Groundwater Management District 4 (GMD 4) along with BAITSSS received national recognition from American Association for the Advancement of Science (AAAS). [26] [27] [15] [28] [29] [30] AAAS highlighted 18 communities across the U.S. that are responding to climate change [31] [32] [33] including Sheridan County, Kansas to prolong the life of Ogallala Aquifer by minimizing water use where this aquifer is depleting rapidly due to extensive agricultural practices . AAAS discussed the development and use of intricate ET model BAITSSS and Dhungel's and other scientists efforts supporting effective use of water in Sheridan County, Kansas. [15]
Furthermore, Upper Republican Regional Advisory Committee of Kansas (June 2019) [16] and GMD 4 [34] discussed possible benefit and utilization of BAITSSS for managing water use, educational purpose, and cost-share. A short story about Ogallala Aquifer Conservation effort from Kansas State University and GMD4 using ET model was published in Mother Earth News (April/May 2020), [35] and Progressive Crop Consultant. [36]
Dhungel et al., 2020, [1] combined with field crop scientists, systems analysts, and district water managers, applied BAITSSS at the district water management level focusing on seasonal ET and annual groundwater withdrawal rates at Sheridan 6 (SD-6) Local Enhanced Management Plan (LEMA) for five years period (2013-2017) in northwest, Kansas, United States. BAITSSS simulated irrigation was compared to reported irrigation as well as to infer deficit irrigation within water right management units (WRMU). In Kansas, groundwater pumping records are legal documents and maintained by the Kansas Division of Water Resources. The in-season water supply was compared to BAITSSS simulated ET as well-watered crop water condition.
A study related to ET uncertainty associated with ET hysteresis (Vapor pressure and net radiation) were conducted using lysimeter, Eddy covariance (EC), and BAITSSS model (point-scale) in an advective environment of Bushland, Texas. [1] Results indicated that the pattern of hysteresis from BAITSSS closely followed the lysimeter and showed weak hysteresis related to net radiation when compared to EC. However, both lysimeter and BAITSSS showed strong hysteresis related to VPD when compared to EC.[ citation needed ]
A study related to lettuce evapotranspiration was conducted at Yuma, Arizona using BAITSSS between 2016 and 2020, where model simulated ET closely followed twelve eddy covariance sites [14]
Simulation of hourly ET at 30 m spatial resolution for seasonal time scale is computationally challenging and data-intensive. [1] [37] The low wind speed complicates the convergence of surface energy balance components as well. [1] The peer group Pan et al. in 2017 [14] and Dhungel et al., 2019 [1] pointed out the possible difficulty of parameterization and validations of these kinds of resistance based models. The simulated irrigation may vary than that actually applied in field. [1]
Albedo is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 to 1. Surface albedo is defined as the ratio of radiosity Je to the irradiance Ee received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time.
Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and drainage basin sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.
Evapotranspiration (ET) refers to the combined processes which move water from the Earth's surface into the atmosphere. It covers both water evaporation and transpiration. Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in agricultural irrigation and water resource management.
Potential evapotranspiration (PET) or potential evaporation (PE) is the amount of water that would be evaporated and transpired by a specific crop, soil or ecosystem if there was sufficient water available. It is a reflection of the energy available to evaporate or transpire water, and of the wind available to transport the water vapor from the ground up into the lower atmosphere and away from the initial location. Potential evapotranspiration is expressed in terms of a depth of water or soil moisture percentage.
The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.
Ecohydrology is an interdisciplinary scientific field studying the interactions between water and ecological systems. It is considered a sub discipline of hydrology, with an ecological focus. These interactions may take place within water bodies, such as rivers and lakes, or on land, in forests, deserts, and other terrestrial ecosystems. Areas of research in ecohydrology include transpiration and plant water use, adaption of organisms to their water environment, influence of vegetation and benthic plants on stream flow and function, and feedbacks between ecological processes, the soil carbon sponge and the hydrological cycle.
The eddy covariance is a key atmospheric measurement technique to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The method analyses high-frequency wind and scalar atmospheric data series, gas, energy, and momentum, which yields values of fluxes of these properties. It is a statistical method used in meteorology and other applications to determine exchange rates of trace gases over natural ecosystems and agricultural fields, and to quantify gas emissions rates from other land and water areas. It is frequently used to estimate momentum, heat, water vapour, carbon dioxide and methane fluxes.
The law of water balance states that the inflows to any water system or area is equal to its outflows plus change in storage during a time interval. In hydrology, a water balance equation can be used to describe the flow of water in and out of a system. A system can be one of several hydrological or water domains, such as a column of soil, a drainage basin, an irrigation area or a city.
Earth observation (EO) is the gathering of information about the physical, chemical, and biological systems of the planet Earth. It can be performed via remote-sensing technologies or through direct-contact sensors in ground-based or airborne platforms.
Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.
The Penman–Monteith equation approximates net evapotranspiration (ET) from meteorological data, as a replacement for direct measurement of evapotranspiration. The equation is widely used, and was derived by the United Nations Food and Agriculture Organization for modeling reference evapotranspiration ET0.
The Surface Energy Balance Algorithm for Land (SEBAL) uses the '''surface''' energy balance to estimate aspects of the hydrological cycle. SEBAL maps evapotranspiration, biomass growth, water deficit and soil moisture. Its main creator is Prof. Dr. W.G.M. Bastiaanssen
METRIC is a computer model developed by the University of Idaho, that uses Landsat satellite data to compute and map evapotranspiration (ET). METRIC calculates ET as a residual of the surface energy balance, where ET is estimated by keeping account of total net short wave and long wave radiation at the vegetation or soil surface, the amount of heat conducted into soil, and the amount of heat convected into the air above the surface. The difference in these three terms represents the amount of energy absorbed during the conversion of liquid water to vapor, which is ET. METRIC expresses near-surface temperature gradients used in heat convection as indexed functions of radiometric surface temperature, thereby eliminating the need for absolutely accurate surface temperature and the need for air-temperature measurements.
Normalized Difference Water Index (NDWI) may refer to one of at least two remote sensing-derived indexes related to liquid water:
A vegetation index (VI) is a spectral imaging transformation of two or more image bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations.
Remote sensing is used in the geological sciences as a data acquisition method complementary to field observation, because it allows mapping of geological characteristics of regions without physical contact with the areas being explored. About one-fourth of the Earth's total surface area is exposed land where information is ready to be extracted from detailed earth observation via remote sensing. Remote sensing is conducted via detection of electromagnetic radiation by sensors. The radiation can be naturally sourced, or produced by machines and reflected off of the Earth surface. The electromagnetic radiation acts as an information carrier for two main variables. First, the intensities of reflectance at different wavelengths are detected, and plotted on a spectral reflectance curve. This spectral fingerprint is governed by the physio-chemical properties of the surface of the target object and therefore helps mineral identification and hence geological mapping, for example by hyperspectral imaging. Second, the two-way travel time of radiation from and back to the sensor can calculate the distance in active remote sensing systems, for example, Interferometric synthetic-aperture radar. This helps geomorphological studies of ground motion, and thus can illuminate deformations associated with landslides, earthquakes, etc.
Land cover maps are tools that provide vital information about the Earth's land use and cover patterns. They aid policy development, urban planning, and forest and agricultural monitoring.
Qihao Weng is an American geographer, urban, environmental sustainability, and remote sensing scientist. He has been a Chair Professor at the Hong Kong Polytechnic University since July 2021, and was the Director of the Center for Urban and Environmental Change and is a professor of geography in the Department of Earth and Environmental Systems at the Indiana State University.
Martha Carol Anderson is research scientist with the United States Department of Agriculture. She is known for her work in using satellite imagery to track droughts and their impact on crops. In 2022, she was elected a fellow of the American Geophysical Union. In 2024, she was elected a fellow of the National Academy of Engineering.
Thermal remote sensing is a branch of remote sensing in the thermal infrared region of the electromagnetic spectrum. Thermal radiation from ground objects is measured using a thermal band in satellite sensors.