BPIFB4

Last updated
BPIFB4
Identifiers
Aliases BPIFB4 , C20orf186, LPLUNC4, RY2G5, dJ726C3.5, BPI fold containing family B member 4
External IDs OMIM: 615718 MGI: 2685852 HomoloGene: 66971 GeneCards: BPIFB4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_182519

NM_001034875

RefSeq (protein)

NP_872325

NP_001030047

Location (UCSC) Chr 20: 33.08 – 33.11 Mb Chr 2: 153.78 – 153.81 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

BPI fold containing family B, member 4 (BPIFB4) is a protein that in humans is encoded by the BPIFB4 gene. [5] It was formerly known as "Long palate, lung and nasal epithelium carcinoma-associated protein 4" encoded by the LPLUNC4 gene. The BPIFB4 gene sequence predicts 4 transcripts (splice variants); 3 isoforms have been well characterized. [6] [7] In a variety of mammals, BPIFB4 is generally expressed in very high levels in the olfactory epithelium (nasal mucosa), high levels in the gonads (testis, ovary) and pituitary, moderate levels in white blood cells (monocytes) [8] [9] [10] [11] It can occur either localized in the cytoplasm of cells or secreted and circulated systemically in blood plasma.

Contents

Superfamily

BPIFB4 is a member of a BPI fold protein superfamily defined by the presence of the bactericidal/permeability-increasing protein fold (BPI fold) which is formed by two similar domains in a "boomerang" shape. [12] This superfamily is also known as the BPI/LBP/PLUNC family or the BPI/LPB/CETP family. [13] The BPI fold creates apolar binding pockets that can interact with hydrophobic and amphipathic molecules, such as the acyl carbon chains of lipopolysaccharide found on Gram-negative bacteria, but members of this family may have many other functions.

BPIFB4 is a member of the BPI-fold gene family and the BPI/LBP/PLUNC protein superfamily BPIFfamily-BPIFB4.png
BPIFB4 is a member of the BPI-fold gene family and the BPI/LBP/PLUNC protein superfamily

Genes for the BPI/LBP/PLUNC superfamily are found in all vertebrate species, including distant homologs in non-vertebrate species such as insects, mollusks, and roundworms. [14] [15] Within that broad grouping is the BPIF gene family whose members encode the BPI fold structural motif and are found clustered on a single chromosome, e.g., Chromosome 20 in humans, Chromosome 2 in mouse, Chromosome 3 in rat, Chromosome 17 in pig, Chromosome 13 in cow. The BPIF gene family is split into two groupings, BPIFA and BPIFB. In humans, BIPFA consists of 3 protein encoding genes BPIFA1 , BPIFA2 , BPIFA3 , and 1 pseudogene BPIFA4P ; while BPIFB consists of 5 protein encoding genes BPIFB1 , BPIFB2 , BPIFB3 , BPIFB4, BPIFB6 and 2 pseudogenes BPIFB5P , BPIFB9P . What appears as pseudogenes in humans may appear as fully functional genes in other species.

BPIFB4 occurs as 3 separate isoforms in humans. [7] These isoforms were discovered in a genome-wide association study of centenarians that revealed 3 haplotypes of the BPIFB4 gene: wild-type (WT-BPIFB4), a longevity-associated variant (LAV-BPIFB4) with a 29% allele frequency, and a rare variant (RV-BPIFB4) with a 5% allele frequency. [16] The BPIFB4 gene is found with other members of the BPIF gene family in a cluster on chromosome 20 in humans.

Function

BPIFB4 protein is normally expressed in olfactory epithelium, mononuclear cells and macrophage-like cells as well as a variety of progenitor/stem cell types. [17] In the olfactory mucosa it is believed to act similarly to other BPIFB proteins in the innate immune response to bacterial exposure. BPIFB4 found circulating in the bloodstream is believed to interact with endothelial cells lining blood vessels which subsequently results in a vasorelaxation of the smooth muscle cells of blood vessels.

Longevity-associated variant LAV-BPIFB4

The study of many populations of centenarians made it possible to identify the longevity-associated variant (LAV) of the BPIFB4 gene. In individuals with high circulating levels of LAV-BPIFB4, it appears to be cardioprotective [17] [18] and immunodulatory (anti-inflammatory). [19] In a study of long-living individuals (LLI), the circulating plasma levels of PBIB4 protein was compared between middle aged individuals (45-59 years old), healthy LLI (95-97 years old), and frail LLI (96-99 year old). Circulating BPIB4 was much higher in the healthy LLI group (824 pg/mL) compared to middle aged controls (133 pg/mL) and the frail LLI group (21 pg/mL). [20]

LAV-BPIFB4 is believed to be cardioprotective due to overall improved endothelial cell function, lowering blood pressure and improving revascularization when cardiac tissue may be compromised. [18] The mechanism for that is suggested by experimental forced expression of LAV-BPIFB4 by gene transfer in old mice and in an animal model of hypertension; elevated LAV-BPIFB4 causes reduced blood pressure which rescued age-related endothelial dysfunction in part by endothelial nitric oxide synthase (eNOS) activation. [16] This effect arises from a cascade of biochemical events. WT-BPIFB4 and LAV-BPIFB4 have different subcellular localization; WT-BPIFB4 localizes to the cell nucleus while LAV-BPIFB4 is cytoplasmic. [7] LAV-BPIFB4 in the endoplasmic reticulum (ER) is phosphorylated by Protein Kinase R (PKR) which results in enhanced protein unfolding, reduced ER stress, and overall improved cellular homeostasis. In addition to phosphorylation by PKR, LAV-BPIFB4 can be phosphorylated by Protein Kinase C alpha. In either case, when LAV-BPIFB4 becomes phosphorylated in the cytosol, it can then interact with 14-3-3 protein and Heat Shock Protein 90, forming a complex. This complex, in turn, activates eNOS. Activated eNOS produces nitric oxide which causes vasorelaxation of smooth muscle cells in blood vessels throughout the circulatory system, lowering blood pressure. Furthermore, increased nitric oxide from activated eNOS promotes the sprouting of new capillaries (angiogenesis) in conditions when ischemia occurs [21] caused by the blockage of arteries by atherosclerosis, for example.

LAV-BPIFB4 is believed to be immunomodulatory due to a variety of mechanisms involving macrophages and monocytes that can counteract low-grade chronic inflammatory conditions. [19] BPIFB4 induces a M2 macrophage polarizing effect which helps resolve inflammation, help tissue healing, and tolerate self-antigens. BPIFB4 induces a redistribution of circulating monocytes from classical monocytes (CD14++CD16-) to non-classical monocytes (CD14++CD16++), normally elevated in patients with coronary artery disease but in this case thought to patrol the vasculature and remove damaged cells in several disease conditions, thereby aiding tissue healing. BPIFB4 also reduces T-cell activation demonstrated by suppression of T cell proliferation and elevation of circulating levels of interleukins IL-23, IL-27 and atheroprotective IL-33. [22]

As a gene variant associated with exceptional longevity, capable to protect from hypertension, atherosclerosis, diabetic cardiopathy, frailty, and inflammaging, LAV-BPIFB4 gene is a promising candidate new ‘drug’ to treat atherosclerosis, its cardiovascular complications, and neurodegenerative diseases. [17]

Related Research Articles

<span class="mw-page-title-main">Integrin alpha X</span> Mammalian protein found in Homo sapiens

CD11c, also known as Integrin, alpha X (ITGAX), is a gene that encodes for CD11c.

<span class="mw-page-title-main">Platelet factor 4</span> Protein involved in blood clotting, wound healing and inflammation

Platelet factor 4 (PF4) is a small cytokine belonging to the CXC chemokine family that is also known as chemokine ligand 4 (CXCL4). This chemokine is released from alpha-granules of activated platelets during platelet aggregation, and promotes blood coagulation by moderating the effects of heparin-like molecules. Due to these roles, it is predicted to play a role in wound repair and inflammation. It is usually found in a complex with proteoglycan.

<span class="mw-page-title-main">CXCL10</span> Mammalian protein found in Homo sapiens

C-X-C motif chemokine ligand 10 (CXCL10) also known as Interferon gamma-induced protein 10 (IP-10) or small-inducible cytokine B10 is an 8.7 kDa protein that in humans is encoded by the CXCL10 gene. C-X-C motif chemokine 10 is a small cytokine belonging to the CXC chemokine family.

<span class="mw-page-title-main">BPIFA1</span> Protein-coding gene in the species Homo sapiens

BPI fold containing family A, member 1 (BPIFA1), also known as Palate, lung, and nasal epithelium clone (PLUNC), is a protein that in humans is encoded by the BPIFA1 gene. It was also formerly known as "Secretory protein in upper respiratory tracts" (SPURT). The BPIFA1 gene sequence predicts 4 transcripts ; 3 mRNA variants have been well characterized. The resulting BPIFA1 is a secreted protein, expressed at very high levels in mucosa of the airways and salivary glands; at high levels in oropharyneal epithelium, including tongue and tonsils; and at moderate levels many other tissue types and glands including pituitary, testis, lung, bladder, blood, prostate, pancreas, levels in the digestive tract and pancreas. The protein can be detected on the apical side of epithelial cells and in airway surface liquid, nasal mucus, and sputum.

<span class="mw-page-title-main">CX3C motif chemokine receptor 1</span> Protein-coding gene in the species Homo sapiens

CX3C motif chemokine receptor 1 (CX3CR1), also known as the fractalkine receptor or G-protein coupled receptor 13 (GPR13), is a transmembrane protein of the G protein-coupled receptor 1 (GPCR1) family and the only known member of the CX3C chemokine receptor subfamily.

<span class="mw-page-title-main">OLR1</span> Protein-coding gene in the species Homo sapiens

Oxidized low-density lipoprotein receptor 1 also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene.

<span class="mw-page-title-main">TEK tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Angiopoietin-1 receptor also known as CD202B is a protein that in humans is encoded by the TEK gene. Also known as TIE2, it is an angiopoietin receptor.

<span class="mw-page-title-main">GPR4</span> Protein-coding gene in the species Homo sapiens

G-protein coupled receptor 4 is a protein that in humans is encoded by the GPR4 gene.

<span class="mw-page-title-main">HHEX</span> Protein-coding gene in the species Homo sapiens

Hematopoietically-expressed homeobox protein HHEX is a protein that in humans is encoded by the HHEX gene and also known as Proline Rich Homeodomain protein PRH.

<span class="mw-page-title-main">LILRB4</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily B member 4 is a protein that in humans is encoded by the LILRB4 gene.

<span class="mw-page-title-main">BPIFB2</span> Protein-coding gene in the species Homo sapiens

BPI fold-containing family B, member 2, (BPIFB2) also known as bactericidal/permeability-increasing protein-like 1, is a protein that in humans is encoded by the BPIFB2 gene.

<span class="mw-page-title-main">Lipid-binding serum glycoprotein</span>

In molecular biology, the lipid-binding serum glycoproteins family, also known as the BPI/LBP/Plunc family or LBP/BPI/CETP family represents a family which includes mammalian lipid-binding serum glycoproteins and/or proteins containing a structural motif known as the BPI fold. Members of this family include:

<span class="mw-page-title-main">BPIFA3</span> Protein-coding gene in the species Homo sapiens

BPI fold containing family A, member 3 (BPIFA3) is a protein that in humans is encoded by the BPIFA3 gene. The gene is also known as SPLUNC3 and C20orf71 in humans and the orthologous gene in mice is 1700058C13Rik. There are multiple variants of the BPIFA3 projected to be a secreted protein. It is very highly expressed in testis with little or no expression in other tissues. The Human Protein Atlas project and Mouse ENCODE Consortium report RNA-Seq expression at RPKM levels of 29.1 for human testis and 69.4 for mouse, but 0 for all other tissues. Similarly, the Bgee consortium, using multiple techniques in addition to RNA-Seq, reports a relative Expression Score of 95.8 out of 100 for testis and 99.0 for sperm in humans; however low levels of BPIFA3 between 20 and 30 were seen for a variety of tissues such as muscle, glands, prostate, nervous system, and skin.

<span class="mw-page-title-main">BPIFB1</span> Protein-coding gene in the species Homo sapiens

BPI fold-containing family B member 1 (BPIFB1) is a protein that in humans is encoded by the BPIFB1 gene. BPIFB1 is a secreted protein, expressed at very high levels in mucosa of the airways and salivary glands, and at moderate levels in the digestive tract and pancreas.

<span class="mw-page-title-main">BPIFB3</span> Protein-coding gene in the species Homo sapiens

BPI fold containing family B, member 3 (BPIFB3) is a protein that in humans is encoded by the BPIFB3 gene. Two variants have been detected in humans.

<span class="mw-page-title-main">BPIFB5P</span> Pseudogene in the species Homo sapiens

BPI fold containing family B, member 5 is a non-human protein encoded by the Bpifb5 gene, also known as Lplunc5. The BPIFB5 protein and Bpifb5 gene have been characterized in mammals such as rodents and even-toed ungulates but are apparently lacking in primates and other vertebrates such as birds, reptiles, and amphibians. The protein in rodents is expressed at moderately high levels in mucosa of the airways and at moderate levels in salivary glands, esophagus, and gonads ; in even-toed ungulates expression is high in testis, moderate in brain and striated muscle, and low in kidney.

<span class="mw-page-title-main">BPIFB6</span> Protein-coding gene in the species Homo sapiens

BPI fold containing family B, member 6 (BPIFB6), also known as bactericidal/permeability-increasing protein-like 3 (BPIL3), is a protein that in humans is encoded by the BPIFB6 gene, also known as BPIL3 and LPLUNC6. It is expressed at high levels in hypertrophic tonsils, at relatively moderate levels in oronasal epithelium including nasal mucosa, tongue, and salivary gland, as well as esophageal mucosa at lesser levels. Orthologs are present in many vertebrate species including mammals, birds, reptiles, and amphibians.

<span class="mw-page-title-main">BPIFB9P</span> Pseudogene in the species Homo sapiens

Vomeromodulin is a non-human protein also known as BPI fold containing family B, member 9 (BPIFB9) in the rat encoded by the Bpifb9/RYF3 gene, and as BPI fold containing family B, member 9A (BPIFB9A) encoded by the Bpifb9a gene in the mouse. This protein has been characterized in mammals such as rodents, carnivores, even-toed ungulates, insectivores, bats, lagomorphs, and shrews but is apparently absent in primates and other vertebrates such as birds, reptiles, and amphibians. Its function is associated with detection of chemical odorant pheromone molecules.

<span class="mw-page-title-main">BPIFA2</span> Protein-coding gene in the species Homo sapiens

BPI fold containing family A, member 2 (BPIFA2), also known as Parotid Secretory Protein (PSP), is a protein that in humans is encoded by the BPIFA2 gene. The BPIFA2 gene sequence predicts multiple transcripts ; 2 mRNA variants have been well characterized. The resulting BPIFA2 is a secreted protein, expressed at very high levels in the parotid (salivary) gland; at high levels in oropharyngeal mucosa, including tongue; and at moderate levels many other tissue types and glands including mammary gland, testis, lung, bladder, blood, prostate, adrenal gland, kidney, and pancreas.

<span class="mw-page-title-main">BPIFA4P</span> Pseudogene in the species Homo sapiens

BPI fold containing family A, member 4 (BPIFA4) is a non-human protein encoded by the Bpifa4 gene in mammals such as monkey, cat, and cow but does not appear in rodents and humans. It is also known as Latherin in horse, encoded by the Lath/Bpifa4 gene but is somewhat divergent from the other species. Latherin/BPIFA4 is a secreted protein found in saliva and sweat.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000186191 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000074665 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: BPI fold containing family B, member 4".
  6. "Gene: BPIFB4 (ENSG00000186191) - Summary - Homo_sapiens - Ensembl genome browser 109". useast.ensembl.org. Retrieved 15 February 2023.
  7. 1 2 3 Villa F, Carrizzo A, Ferrario A, Maciag A, Cattaneo M, Spinelli CC, et al. (October 2018). "A Model of Evolutionary Selection: The Cardiovascular Protective Function of the Longevity Associated Variant of BPIFB4". International Journal of Molecular Sciences. 19 (10): 3229. doi: 10.3390/ijms19103229 . PMC   6214030 . PMID   30347645.
  8. "Gene : BPIFB4 - ENSSSCG00000029295". bgee.org. The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Retrieved 15 February 2023.
  9. "Gene : Bpifb4 - ENSMUSG00000074665". bgee.org. The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Retrieved 15 February 2023.
  10. "Gene : BPIFB4 - ENSG00000186191". bgee.org. The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Retrieved 15 February 2023.
  11. "Gene : BPIFB4 - ENSBTAG00000038412". bgee.org. The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Retrieved 15 February 2023.
  12. Beamer LJ, Carroll SF, Eisenberg D (April 1998). "The BPI/LBP family of proteins: a structural analysis of conserved regions". Protein Science. 7 (4): 906–914. doi:10.1002/pro.5560070408. PMC   2143972 . PMID   9568897.
  13. "CDD Conserved Protein Domain Family: BPI". www.ncbi.nlm.nih.gov.
  14. Beamer LJ, Fischer D, Eisenberg D (July 1998). "Detecting distant relatives of mammalian LPS-binding and lipid transport proteins". Protein Science. 7 (7): 1643–1646. doi:10.1002/pro.5560070721. PMC   2144061 . PMID   9684900.
  15. Bingle CD, Seal RL, Craven CJ (August 2011). "Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB proteins as a subfamily of the BPI fold-containing superfamily". Biochemical Society Transactions. 39 (4): 977–983. doi:10.1042/BST0390977. PMC   3196848 . PMID   21787333.
  16. 1 2 Villa F, Carrizzo A, Spinelli CC, Ferrario A, Malovini A, Maciąg A, et al. (July 2015). "Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis". Circulation Research. 117 (4): 333–345. doi:10.1161/CIRCRESAHA.117.305875. PMC   5496930 . PMID   26034043.
  17. 1 2 3 Dossena M, Ferrario A, Lopardo V, Ciaglia E, Puca AA (September 2020). "New Insights for BPIFB4 in Cardiovascular Therapy". International Journal of Molecular Sciences. 21 (19): 7163. doi: 10.3390/ijms21197163 . PMC   7583974 . PMID   32998388.
  18. 1 2 Cattaneo M, Beltrami AP, Thomas AC, Spinetti G, Alvino V, et al. (13 January 2023). "The longevity-associated BPIFB4 gene supports cardiac function and vascularization in aging cardiomyopathy". Cardiovascular Research. 119 (7): 1583–1595. doi: 10.1093/cvr/cvad008 . PMC   10318395 . PMID   36635236.
  19. 1 2 Montella F, Lopardo V, Cattaneo M, Carrizzo A, Vecchione C, et al. (2021). "The Role of BPIFB4 in Immune System and Cardiovascular Disease: The Lesson from Centenarians". Translational Medicine UniSa. 24 (1): 1–12. doi: 10.37825/2239-9747.1024 . PMC   9673912 . PMID   36447743. S2CID   247121105.
  20. Villa F, Malovini A, Carrizzo A, Spinelli CC, Ferrario A, et al. (December 2015). "Serum BPIFB4 levels classify health status in long-living individuals". Immunity & Ageing. 12 (1): 27. doi: 10.1186/s12979-015-0054-8 . PMC   4678610 . PMID   26675039.
  21. Luque Contreras D, Vargas Robles H, Romo E, Rios A, Escalante B (November 2006). "The role of nitric oxide in the post-ischemic revascularization process". Pharmacology & Therapeutics. 112 (2): 553–63. doi:10.1016/j.pharmthera.2006.05.003. PMID   16950515.
  22. Puca AA, Carrizzo A, Spinelli C, Damato A, Ambrosio M, et al. (7 July 2020). "Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism". European Heart Journal. 41 (26): 2487–2497. doi:10.1093/eurheartj/ehz459. PMC   7340354 . PMID   31289820.

Further reading