Biomechanics of sprint running

Last updated
Sprinters during a 200 m race Crawford, Dzingai 200 m Berlin 2009.jpg
Sprinters during a 200 m race

Sprinting involves a quick acceleration phase followed by a velocity maintenance phase. During the initial stage of sprinting, the runners have their upper body tilted forward in order to direct ground reaction forces more horizontally. As they reach their maximum velocity, the torso straightens out into an upright position. The goal of sprinting is to reach and maintain high top speeds to cover a set distance in the shortest possible time. A lot of research has been invested in quantifying the biological factors and mathematics that govern sprinting. In order to achieve these high velocities, it has been found that sprinters have to apply a large amount of force onto the ground to achieve the desired acceleration, rather than taking more rapid steps.

Contents

Quantifying sprinting mechanics and governing equations

Human legs during walking have been mechanically simplified in previous studies to a set of inverted pendulums, while distance running (characterized as a bouncing gait) has modeled the legs as springs. Until recently, it had been long believed that faster sprinting speeds are promoted solely by physiological features that increase stride length and frequency; while these factors do contribute to sprinting velocities, it has also been found that the runner's ability to produce ground forces is also very important.

Weyand et al. (2000) [1] came up with the following equation for determining sprint velocity:

where is the sprint velocity (m/s), the step frequency (1/s), the average force applied to the ground (N), the body weight (N), and the contact length (m).

In short, sprint velocity is reliant on three main factors: step frequency (how many steps you can take per second), average vertical force applied to the ground, and contact length (distance your center of mass translates over the course of one contact period). The formula was tested by having subjects run on a force treadmill (which is a treadmill that contains a force plate to measure ground reaction forces (GRF)). Figure 1[ which? ] shows approximately what the force plate readout looks like for the duration of three steps. While this equation has proved to be fairly accurate, the study was limited in the sense that data was collected by a force plate that only measured vertical GRF rather than horizontal GRF. This led some people to the false pretense that simply exerting a greater vertical (perpendicular) force to the ground would lead to greater acceleration, which is far from correct (See Morin studies below).

In 2005, Hunter et al. [2] conducted a study that determined relationships between sprint velocity and relative impulses in which gait and ground reaction force data was collected and analyzed. It was found that during accelerated runs, a typical support phase is characterized by a breaking phase followed by a propulsive phase (-FH followed by + FH). A common trend in the fastest subjects tested was that there was only a moderate to low amount of vertical force and a large amount of horizontal forces produced. Post study, it was hypothesized by the author that braking forces are necessary to store elastic energy in muscle and tendon tissue. This study loosely confirmed the importance of horizontal as well as vertical GRF during the acceleration phase of sprinting. Unfortunately, since data were collected at the 16-m mark, it was insufficient to draw definite conclusions regarding the entire acceleration phase.

Morin et al. (2011) [3] performed a study to investigate the importance of ground reaction forces by having sprinters run on a force treadmill that measured both horizontal and vertical ground reaction forces. Belt velocity was measured for each step and calculations were performed to find the “index of force application technique”, which determines how well subjects are able to apply force in the horizontal direction.

The second half of the test involved subjects performing a 100-m sprint on a man-made track using radar to measure the forward speed of runners to create velocity-time curves. The main result of this study showed that the force application technique (rather than simply the total amount of force applied) is the key determinant factor in predicting a sprinter's velocity. This has yet to be integrated into the governing equation of sprinting.

Kinetics

The kinetics of running describes the motion of a runner using the effects of forces acting on or out of the body. The majority of contributing factors to internal forces comes from leg muscle activation and arm swing.

Leg Muscle Activation

The muscles responsible for accelerating the runner forward are required to contract with increasing speed to accommodate the increasing velocity of the body. During the acceleration phase of sprinting, the contractile component of muscles is the main component responsible for the power output. Once a steady state velocity has been reached and the sprinter is upright, a sizable fraction of the power comes from the mechanical energy stored in the ‘series elastic elements’ during stretching of the contractile muscles that is released immediately after the positive work phase. [4] As the velocity of the runner increases, inertia and air resistance effects become the limiting factors on the sprinter's top speed.

It was previously believed that there was an intramuscular viscous force that increased proportionally to the velocity of muscle contraction that opposed the contractile force; this theory has since been disproved. [5]

In a study conducted in year 2004, the gait patterns of distance runners, sprinters, and non-runners was measured using video recording. Each group ran a 60-meter run at 5.81 m/s (to represent distance running) and at maximal running speed. The study showed that non-sprinters ran with an inefficient gait for the maximal speed trial while all groups ran with energetically efficient gaits for the distance trial. This indicates that the development of an economical distance running form is a natural process while sprinting is a learned technique that requires practice. [6]

Arm Swing

Contrary to the findings of Mann et al. (1981), [7] arm swing plays a vital role in both stabilizing the torso and vertical propulsion. Regarding torso stabilization, arm swing serves to counterbalance the rotational momentum created by leg swing, as suggested by Hinrichs et al. (1987). [8] In short, the athlete would have a hard time controlling the rotation of their trunk without arm swing.

The same study [8] also suggested that, as opposed to popular belief, the horizontal force production capabilities of the arms are limited due to the backward swing that follows the forward swing, so the two components cancel each other out. This is not to suggest, however, that arm swing does not contribute to propulsion at all during sprinting; in fact, it can contribute up to 10% of the total vertical propulsive forces that a sprinter can apply to the ground. The reason for this is that, unlike the forward-backward motion, both arms are synchronized in their upward-downward movement. As a result, there is no cancellation of forces. Efficient sprinters have an arm swing that originates from the shoulder and has a flexion and extension action that is of the same magnitude of the flexion and extension occurring at the ipsilateral shoulder and hip.

Energetics

Di Prampero et al. [9] mathematically quantifies the cost of the acceleration phase (first 30 m) sprint running through experimental testing. The subjects sprinted repeatedly on a track while radar determined their velocity. Additionally, it has been found in previous literature [10] that the energetics of sprinting on flat terrain is analogous to uphill running at a constant speed. The mathematical derivation process is loosely followed below:

In the initial phase of sprint running, the total acceleration acting on the body () is the vectoral sum of the forward acceleration and earth's acceleration due to gravity:

The “Equivalent slope” (ES) when sprinting on flat ground is:

The “Equivalent normalized body mass” (EM) is then found to be:

Following the data collection, the cost of sprinting () was found to be:

The above equation does not take wind resistance into account, so considering the cost of running against wind resistance (), which is known to be:

We combine the two equations to arrive at:

Where is the acceleration of the runner's body, the forward acceleration, the acceleration of gravity, a proportionality constant and the velocity.

Fatigue effects

Fatigue is a prominent factor in sprinting, and it is already widely known that it hinders maximal power output in muscles, but it also affects the acceleration of runners in the ways listed below.

Submaximal muscle coordination

A study on muscle coordination [11] in which subjects performed repeated 6-second cycling sprints, or intermittent sprints of short duration (ISSD) showed a correlation between decrease in maximal power output and changes in motor coordination. In this case, motor coordination refers to the ability to coordinate muscle movements in order to optimize a physical action, so submaximal coordination indicates that the muscles are no longer activating in sync with one another. The results of the study showed that a delay between the vastus lateralis (VL) and biceps femoris (BF) muscles. Since there was a decrease in power during ISSD occurring in tandem with changes in VL-BF coordination, it is indicated that changes in inter-muscle coordination is one of the contributing factors for the reduced power output resulting from fatigue. This was done using bicycle sprinting, but the principles carry over to sprinting from a runner's perspective.

Hindrance of effective force application techniques

Morin et al. [12] explored the effects of fatigue on force production and force application techniques in a study where sprinters performed four sets of five 6 second sprints using the same treadmill setup as previously mentioned. Data was collected on their ability to produce ground reaction forces as well as their ability to coordinate the ratio of ground forces (horizontal to vertical) to allow for greater horizontal acceleration. The immediate results showed a significant decrease in performance with each sprint and a sharper decrease in rate of performance depreciation with each subsequent data set. In conclusion, it was obvious that both the total force production capability and technical ability to apply ground forces were greatly affected.

Injury Prevention

Running gait (biomechanics) is very important for not only efficiency but also for injury prevention. Approximately between 25 and 65% of all runners experience running related injuries each year. [13] Abnormal running mechanics are often cited as the cause of injuries. However, few suggest altering a person's running pattern in order to reduce the risk of injury. Wearable technology companies like I Measure U are creating solutions using biomechanics data to analyse the gait of a runner in real time and provide feedback on how to change the running technique to reduce injury risk. [14]

Related Research Articles

Running Method of terrestrial locomotion allowing rapid movement on foot

Running is a method of terrestrial locomotion allowing humans and other animals to move rapidly on foot. Running is a type of gait characterized by an aerial phase in which all feet are above the ground. This is in contrast to walking, where one foot is always in contact with the ground, the legs are kept mostly straight and the center of gravity vaults over the stance leg or legs in an inverted pendulum fashion. A feature of a running body from the viewpoint of spring-mass mechanics is that changes in kinetic and potential energy within a stride occur simultaneously, with energy storage accomplished by springy tendons and passive muscle elasticity. The term running can refer to any of a variety of speeds ranging from jogging to sprinting.

Jumping Form of movement in which an organism or mechanical system propels itself into the air

Jumping or leaping is a form of locomotion or movement in which an organism or non-living mechanical system propels itself through the air along a ballistic trajectory. Jumping can be distinguished from running, galloping and other gaits where the entire body is temporarily airborne, by the relatively long duration of the aerial phase and high angle of initial launch.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. Named after William Froude, the Froude number is based on the speed–length ratio which he defined as:

Gait (human) A pattern of limb movements made during locomotion

A gait is a pattern of limb movements made during locomotion. Human gaits are the various ways in which a human can move, either naturally or as a result of specialized training. Human gait is defined as bipedal, biphasic forward propulsion of the center of gravity of the human body, in which there are alternate sinuous movements of different segments of the body with least expenditure of energy. Different gait patterns are characterized by differences in limb-movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in the contact with the ground.

Inverse dynamics is an inverse problem. It commonly refers to either inverse rigid body dynamics or inverse structural dynamics. Inverse rigid-body dynamics is a method for computing forces and/or moments of force (torques) based on the kinematics (motion) of a body and the body's inertial properties. Typically it uses link-segment models to represent the mechanical behaviour of interconnected segments, such as the limbs of humans or animals or the joint extensions of robots, where given the kinematics of the various parts, inverse dynamics derives the minimum forces and moments responsible for the individual movements. In practice, inverse dynamics computes these internal moments and forces from measurements of the motion of limbs and external forces such as ground reaction forces, under a special set of assumptions.

A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.

A gravity turn or zero-lift turn is a maneuver used in launching a spacecraft into, or descending from, an orbit around a celestial body such as a planet or a moon. It is a trajectory optimization that uses gravity to steer the vehicle onto its desired trajectory. It offers two main advantages over a trajectory controlled solely through the vehicle's own thrust. First, the thrust is not used to change the spacecraft's direction, so more of it is used to accelerate the vehicle into orbit. Second, and more importantly, during the initial ascent phase the vehicle can maintain low or even zero angle of attack. This minimizes transverse aerodynamic stress on the launch vehicle, allowing for a lighter launch vehicle.

Undulatory locomotion

Undulatory locomotion is the type of motion characterized by wave-like movement patterns that act to propel an animal forward. Examples of this type of gait include crawling in snakes, or swimming in the lamprey. Although this is typically the type of gait utilized by limbless animals, some creatures with limbs, such as the salamander, forgo use of their legs in certain environments and exhibit undulatory locomotion. In robotics this movement strategy is studied in order to create novel robotic devices capable of traversing a variety of environments.

Sports biomechanics is a quantitative based study and analysis of professional athletes and sports activities in general. It can simply be described as the physics of sports. In this subfield of biomechanics the laws of mechanics are applied in order to gain a greater understanding of athletic performance through mathematical modeling, computer simulation and measurement. Biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics. Within mechanics there are two sub-fields of study: statics, which is the study of systems that are in a state of constant motion either at rest or moving with a constant velocity; and dynamics, which is the study of systems in motion in which acceleration is present, which may involve kinematics and kinetics. Sports biomechanists help people obtain optimal muscle recruitment and performance. A biomechanist also uses their knowledge to apply proper load barring techniques to preserve the body.

Parkinsonian gait Type of gait

Parkinsonian gait is the type of gait exhibited by patients suffering from Parkinson's disease (PD). It is often described by people with Parkinson's as feeling like being stuck in place, when initiating a step or turning, and can increase the risk of falling. This disorder is caused by a deficiency of dopamine in the basal ganglia circuit leading to motor deficits. Gait is one of the most affected motor characteristics of this disorder although symptoms of Parkinson's disease are varied.

Human locomotion is considered to take two primary forms: walking and running. In contrast, many quadrupeds have three distinct forms of locomotion: walk, trot, and gallop. Walking is a form of locomotion defined by a double support phase when both feet are on the ground at the same time. Running is a form of locomotion that does not have this double support phase.

Obesity and walking describes how the locomotion of walking differs between an obese individual and a non-obese individual. The prevalence of obesity is becoming a worldwide problem, with the American population leading the way. In 2007-2008, prevalence rates for obesity among adult American men were approximately 32% and over 35% amongst adult American women. According to the Johns Hopkins Bloomberg School of Public Health, 66% of the American population is either overweight or obese and this number is predicted to increase to 75% by 2015. Obesity is linked to health problems such as decreased insulin sensitivity and diabetes, cardiovascular disease, cancer, sleep apnea, and joint pain such as osteoarthritis. It is thought that a major factor of obesity is that obese individuals are in a positive energy balance, meaning that they are consuming more calories than they are expending. Humans expend energy through their basal metabolic rate, the thermic effect of food, non-exercise activity thermogenesis (NEAT), and exercise. While many treatments for obesity are presented to the public, exercise in the form of walking is an easy, relatively safe activity that has the potential to move a person towards a negative energy balance and if done for a long enough time may reduce weight.

Terrestrial locomotion by means of a running gait can be accomplished on level surfaces. However, in most outdoor environments an individual will experience terrain undulations requiring uphill running. Similar conditions can be mimicked in a controlled environment on a treadmill also. Additionally, running on inclines is used by runners, both distance and sprinter, to improve cardiovascular conditioning and lower limb strength.

Limitations of animal running speed Factors determining maximum running speed in animals

Limitations of animal running speed provides an overview of how various factors determine the maximum running speed. Some terrestrial animals are built for achieving extremely high speeds, such as the cheetah, pronghorn, race horse and greyhound, while humans can train to achieve high sprint speeds. There is no single determinant of maximum running speed: however, certain factors stand out against others and have been investigated in both animals and humans. These factors include: Muscle moment arms, foot morphology, muscle architecture, and muscle fiber type. Each factor contributes to the ground reaction force (GRF) and foot contact time of which the changes to increase maximal speed are not well understood across all species.

Arm swing in human locomotion

Arm swing in human bipedal walking is a natural motion wherein each arm swings with the motion of the opposing leg. Swinging arms in an opposing direction with respect to the lower limb reduces the angular momentum of the body, balancing the rotational motion produced during walking. Although such pendulum-like motion of arms is not essential for walking, recent studies point that arm swing improves the stability and energy efficiency in human locomotion. Those positive effects of arm swing have been utilized in sports, especially in racewalking and sprinting.

Mechanics of Oscar Pistoriuss running blades Blades used by South African Paralympic runner Oscar Pistorius

The mechanics of the running blades used by South African former Paralympic runner Oscar Pistorius depend on special carbon-fiber-reinforced polymer prosthetics. Pistorius has double below-the-knee amputations and competed in both non-disabled and T44 amputee athletics events. Pistorius's eligibility to run in international non-disabled events is sanctioned by the International Association of Athletics Federations (IAAF).

Neuromechanics

As originally proposed by Enoka, neuromechanics is a field of study that combines concepts from biomechanics and neurophysiology to study human movement. Neuromechanics examines the combined roles of the skeletal, muscular, and nervous systems and how they interact to produce the motion required to complete a motor task.

Effect of gait parameters on energetic cost

The effect of gait parameters on energetic cost is a relationship that describes how changes in step length, cadence, step width, and step variability influence the mechanical work and metabolic cost involved in gait. The source of this relationship stems from the deviation of these gait parameters from metabolically optimal values, with the deviations due to environmental, pathological, and other factors.

The function of the lower limbs during walking is to support the whole-body against gravitational forces while generating movement patterns which progress the body forward. Walking is an activity that is primarily confined to the sagittal plane, which is also described as the plane of progression. During one gait cycle, there are two major phases: stance and swing. In a healthy individual walking at a normal walking speed, stance phase makes up approximately 60% of one gait cycle and swing makes up the remaining 40%. The lower limbs are only in contact with the ground during stance phase which is typically subdivided into 5 events: heel contact, foot flat, mid-stance, heel off, and toe off. The majority of stance phase (~40%) takes place in single-limb support where one limb is in contact with the ground and the contralateral limb is in swing phase. During this time interval, the lower limb must support constant changes in alignment of body weight while propelling forward. The hip, knee, and ankle joints move through cyclical kinematic patterns that are controlled by muscles which cross these joints. As postural changes occur, the body adapts by motor tuning an efficient muscular pattern that will accomplish the necessary kinematics required to walk.

The study of animal locomotion is a branch of biology that investigates and quantifies how animals move.

References

  1. Weyand, Peter G., Deborah B. Sternlight, Matthew J. Bellizzi, and Seth Wright. "Faster Top Running Speeds Are Achieved with Greater Ground Forces Not More Rapid Leg Movements." Journal of Applied Physiology 89 (2000): 1991-999.
  2. Hunter, JP. "Relationships between Ground Reaction Force Impulse and Kinematics of Sprint-running Acceleration." Journal of Biomechanics 21 (2005): 31-43.
  3. Morin, Jean-Benoît, Pascal Edouard, and Pierre Samozino. "Technical Ability of Force Application as a Determinant Factor of Sprint Performance." Medicine & Science in Sports & Exercise 43.9 (2011): 1680-688.
  4. Cavagna, Giovanni A., L. Komarek, and Stefania Mazzoleni. "The Mechanics of Sprint Running." The Journal of Physiology 217 (1971): 709-21.
  5. Furusawa, K., A. V. Hill, and J. L. Parkinson. "The Dynamics of "Sprint" Running." Proceedings of the Royal Society B: Biological Sciences 102.713 (1927): 29-42.
  6. Bushnell, Tyler Dwight. A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds. Thesis. Brigham Young University. Dept. of Exercise Sciences, 2004.
  7. Mann, Ralph V. "A Kinetic Analysis of Sprinting." Medicine & Science in Sports & Exercise 13.5 (1981): 325-28.
  8. 1 2 Hinrichs, R. N. "Upper Extremity Function in Running. II: Angular Momentum Considerations." International Journal of Sport Biomechanics 3 (1987): 242-63.
  9. Di Prampero, PE, S. Fusi, JB Morin, A. Belli, and G. Antonutto. "Sprint Running: a New Energetic Approach." Journal of Experimental Biology 208.14 (2005): 2809-816.
  10. Di Prampero, P. E., S. Fusi, and G. Antonutto. "Of Sprint Running or Running Uphill?" The Journal of Physiology 543 (2002): 198.
  11. Billaut, F., F. Basset, and G. Falgairette. "Muscle Coordination Changes during Intermittent Cycling Sprints." Neuroscience Letters 380.3 (2005): 265-69.
  12. Morin, Jean-Benoit, Pierre Samozino, Pascal Edouard, and Katja Tomazin. "Effect of Fatigue on Force Production and Force Application Technique during Repeated Sprints." Journal of Biomechanics 44.15 (2011): 2719-723.
  13. Peter Cavanagh, PhD. Biomechanics of Distance Running. Chapter 2, Human Kinetics, 1990
  14. Wearable tech - Mark Finch, I Measure U NZ Herald