C22orf23

Last updated
C22orf23
Identifiers
Aliases C22orf23 , EVG1, dJ1039K5.6, chromosome 22 open reading frame 23
External IDs MGI: 1920774; HomoloGene: 13062; GeneCards: C22orf23; OMA:C22orf23 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001207062
NM_032561

NM_138581
NM_001310576
NM_001310579
NM_001310581

RefSeq (protein)

NP_001193991
NP_115950

NP_001297505
NP_001297508
NP_001297510
NP_613047

Location (UCSC) Chr 22: 37.94 – 37.95 Mb Chr 15: 79.01 – 79.03 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

C22orf23 (Chromosome 22 Open Reading Frame 23) is a protein which in humans is encoded by the C22orf23 gene. Its predicted secondary structure consists of alpha helices and disordered/coil regions. It is expressed in many tissues and highest in the testes and it is conserved across many orthologs.

Contents

Gene

This conceptual translation of c22orf23 includes post-translational modifications indicated on the right, start codon in green, stop codon in red, exon-exon junctions in blue, polyadenylation tail in orange, and highly conserved amino acids in purple. Conceptual Translation of C22orf23.png
This conceptual translation of c22orf23 includes post-translational modifications indicated on the right, start codon in green, stop codon in red, exon-exon junctions in blue, polyadenylation tail in orange, and highly conserved amino acids in purple.

Size and locus

C22orf23 is a gene found in homo sapiens. It is located on Chromosome 22 on the minus strand, map position 22q13.1. It spans 10,620 base pairs. [5] [6] Its mRNA transcript is 1988 base pars long and has 7 exons. [7] Its predicted function is protein binding, and molecular function. [5]

Common aliases

C22orf23's aliases are: UPF0193 Protein EVG1, DJ1039K5.6, EVG1 [8] FLJ32787, and LOC84645. [9]

Protein

Primary sequence

The protein encoded by the mRNA sequence is 217 amino acids in length [6] and has a predicted molecular mass of 25 kDa. [8] [10] The predicted isoelectric point is 9.8. [11] It is located in the nucleus. [10]

Domains and motifs

It is predicted to be an intracellular protein [10] and does not have any predicted transmembrane domains. [10] [12] [13] Due to its location and lack of predicted transmembrane domains, the protein structure is likely a globular protein.

Post-Translational Modifications

Predicted secondary structure of C22orf23. 53% of the sequence is predicted as disordered and cannot be predicted with confidence. It has a coverage modeled of 28% with a 42.9% confidence. The image was created using Phyre2. Final.casp.big.png
Predicted secondary structure of C22orf23. 53% of the sequence is predicted as disordered and cannot be predicted with confidence. It has a coverage modeled of 28% with a 42.9% confidence. The image was created using Phyre2.

C22orf23 has many predicted post-translational modifications such as: phosphorylation sites, [15] cell attachment sequences, N-myristoylation sites, [16] O-linked glycosylation sites, [17] glycation sites, [18] Ac-ASQK cleaved-acetylated sites, and Sumoylation sites. [19] [20] Many of the predicted phosphorylation sites were also predicted to be O-linked glycosylation sites thus the phosphorylation site could be blocked altering that domain's structure or function.

Secondary Structure

The predicted secondary structure consists of alpha helices and disordered/coil regions. [14] [21] [22] [23] [24] The predicted secondary structure model has a 28% coverage of the amino acid sequence with a 42.9% confidence. [14]

Homology

Paralogs

There are currently no known paralogs to C22orf23. [25] [26] [27]

Orthologs

Orthologs can be found in most major groups of species ranging from most similar in primates to most distant in a member of phylum Chytridiomycota. This includes: mammals, reptiles, birds, amphibian, bony fish, cartilaginous fish, invertebrates, and fungi. Orthologs may have first appeared in plants or fungi however it is uncertain. [26]

This table lists several orthologs for C22orf23 and includes their species name, common name, taxonomic order, accession number, sequence length, sequence similarity, [26] and evolutionary date of divergence. [28]

Orthologs of C22orf23
Genus and speciesCommon nameTaxonomic group (Order)Date of Divergence (MYA)Accession #Sequence length (aa)Sequence identity (%)
Homo sapiens HumanPrimate0 AAH31998.1 217100
Piliocolobus tephrosceles Ugandan Red ColobusPrimate29 XP_023077818 21795
Propithecus coquereli Coquerel's SifakaPrimate74 XP_012493592 21784
Marmota marmota marmotaAlpine MarmotRodent90 XP_015338208 21773
Mus caroli Ryukyu MouseRodent90 XP_021038824 21681
Physeter catodon Sperm WhaleEven-toed ungulates96 XP_007111804 21785
Odocoileus virginianus texanusWhite Tailed DeerArtiodactyla96 XP_020752151 21786
Panthera pardus LeopardCarnivores96 XP_019302406 21785
Rousettus aegyptiacus Egyptian Fruit BatBat96 XP_016017249 21783
Condylura cristata Star-nosed MoleEulipotyphla96 XP_004676507 21780
Vombatus ursinus Common WombatDiprotodontia159 XP_027727589 26361
Nothoprocta perdicaria Chilean TinamouTinamiformes312 XP_025895660 23461
Serinus canaria Atlantic CanaryPasseriformes312 XP_009084739 22357
Notechis scutatus Tiger SnakeSquamata312 XP_026550684 23456
Nanorana parkeri High Himalaya FrogFrog352 XP_018428081 22551
Salvelinus alpinus Arctic charSalmoniformes435 XP_023998646 21749
Rhincodon typus Whale SharkCarpet shark473 XP_020370272 23248
Callorhinchus milii Australian ghostsharkChimaera473 NP_001279734 23246
Apostichopus japonicus Sea CucumberSynallactida684 PIK47438 22148
Crassostrea virginica Eastern OysterOstreoida797 XP_022313321.1 22443
Capitella teleta Segmented Annelid WormCapitellidae797 ELU02060 22139
Megachile rotundata Leafcutter BeeHymenopterans797 XP_003702438 23036
Stylophora pistillata Hood CoralStony corals824 XP_022780055 21942
Pocillopora damicornis Cauliflower CoralScleractinia824 XP_027046963 22042
Macrostomum lignano FlatwormMacrostomida824 PAA47644 27038
Trichoplax TrichoplaxTricoplaciformes948 RDD45244 23939
Spizellomyces punctatus FungiSpizellomyces punctatus1105 XP_016608264 [29] 26030

Expression

Promoter

The core promoter is GXP_7541220 (-), and its coordinates are 37953445-37954669 and it is 1225 base pairs long. [30]

Tissue expression

Human expression

Protein expression is highest in the testes however it is also expressed at low levels in many other tissues such as: brain, kidney, stomach, skin, [31] thyroid, urinary bladder, placenta, endometrium, esophagus, and appendix, bone marrow, adipose, lung, [32] and ovary. [33]

Ortholog expression

Expression in orthologs Rattus norvegicus , is expressed primarily in the testes with low levels of expression in the: kidneys, lungs, heart, and uterus. [34] Mus musculus is expressed primarily in the adrenal and testes, and also notably expressed in the: bladder, abdomen, heart, lungs, ovaries, and mammary gland. [35]

Interactions

Protein Interactions

There are several predicted protein interactions: Cyclin-D1-binding protein 1 which may regulate cell cycle progression, Vacuolar protein sorting-associated protein 28 homolog which is involved as a regulator of vesicular trafficking, UPF0739 protein C1orf74, and estrogen related receptor gamma. These interacting proteins were identified as either having direct interactions or physical associations. They were identified through a variety of detection methods including affinity chromatography, 2 hybrid prey pooling, and 2 hybrid array. [36] [37] [38] It also has predicted protein interactions with SH3 domain containing 19, EvC ciliary complex subunit 1, RIMS binding protein 3B, RIMS binding protein 3C,TSSK6-activating co-chaperone protein, V-set and immunoglobulin domain containing 8, family with sequence similarity 124 member B, small nucleolar RNA host gene 28, and transmembrane protein 200B. Evidence suggesting a functional link for these interactions were supported through Co-mention on PubMed. [36] [39]

Clinical Significance

Disease Association

C22orf23 was identified as belonging to one of two groups of pooled serum samples in a study that analyzed the difference between serum glycoproteins of hepatocellular carcinoma and that of normal serum. [40] Deletions of parts of C22orf23 (exons 3 and 4) and several other genes including SOX10 has been observed in patients with peripheral demyelinating neuropathy, central demyelinating leukodystrophy, Waardenburg Syndrome, and Hirschsprung disease and is therefore, suggested to be a potential factor involved in these ailments. [41] [42] C22orf23 was also mentioned in a study of mutation profiles from ER+ breast cancer samples taken from postmenopausal patience. There were mutations found that affected C22orf23 among many other genes. [43] In a study of epigenetic alterations involved in coronary artery disease, C22orf23 was found to have altered epigenetic modifications which could be involved in novel genes in Coronary artery disease. [44] In a study that attempts to predict imprinted genes that maybe linked to Human disorders, C22orf23 was identified as homologous of imprinted Gene candidates showing linkage to schizophrenia. [45] In another study it was listed as being a potently regulated protein in uterine leiomyoma. [46]

Mutations

There are a total of 3340 SNPs within the 5’ and 3’ UTR, introns, exons, as well as some genes near the 5’ and 3’ UTR. There is a total of 225 SNPs within the coding sequence. Some of the SNPs occur in conserved amino acids within the coding sequence and some reported have one or more types of validation. Some of the SNPs have high heterozygosity scores and thus have a presence in the population. [47]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000128346 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000033029 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "C22orf23 Gene(Protein Coding)". GeneCards Human Gene Database. 2019-05-05.[ dead link ]
  6. 1 2 "Chromosome 22 open reading frame 23 (C22orf23)". www.ncbi.nlm.nih.gov. Archived from the original on September 24, 2008. Retrieved 2019-05-02.
  7. "Homo sapiens chromosome 22 open reading frame 23 (C22orf23), transcript variant 1, mRNA" . Retrieved 2019-05-01.
  8. 1 2 "C22orf23 Gene". Gene Cards Human Gene Database. Archived from the original on 2011-11-28. Retrieved 2019-05-01.
  9. "WikiGenes - Collaborative Publishing". WikiGenes - Collaborative Publishing. Archived from the original on 2018-09-13. Retrieved 2019-05-04.
  10. 1 2 3 4 "Cell atlas - C22orf23 - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2019-05-04.
  11. "ExPASy - Compute pI/Mw tool". web.expasy.org. Retrieved 2019-05-04.
  12. "TMpred - Prediction of Transmembrane Regions and Orientation". ExPASy Bioinformatics Resource Portal. 2019-05-05. Archived from the original on 2019-03-05. Retrieved 2019-05-06.
  13. "SAPS - Statistical Analysis of Protein Sequences". EMBL-EBI -SAPS. 2019-05-05.
  14. 1 2 3 "PHYRE2 Protein Fold Recognition Server". www.sbg.bio.ic.ac.uk. Retrieved 2019-05-04.
  15. "NetPhos 3.1 Server". DTU Bioinformatics Department of Bio and Health Informatics. 2019-05-05.
  16. "Motif Scan". Myhits. 2019-05-05. Archived from the original on 2019-04-02. Retrieved 2019-05-06.
  17. "NetOGlyc 4.0 Server". DTU Bioinformatics Department of Bio and Health Informatics. 2019-05-05.
  18. "NetGlycate 1.0 Server". DTU Bioinformatics Department of Bio and Health Informatics. 2019-05-05.
  19. "GPS SUMO - prediction of SUMOylation & SUMO- binding Motifs". GPS. 2019-05-05. Archived from the original on 2013-05-10. Retrieved 2019-05-06.
  20. "SUMOplot™ Analysis Program". ABGENT Wuxi App Tec Company. 2019-05-05. Archived from the original on 2005-01-03.
  21. "CFSSP - Chou & Fasman secondary structure prediction server". 2019-05-04.
  22. "A Protein Secondary Structure Prediction Server". Jpred 4 incorporating Jnet. 2019-05-04.
  23. "SOPMA SECONDARY STRUCTURE PREDICTION METHOD". PRAB- Gerland Rhone-Alpes Bioinformatics Pole Gerland Site - Institute of biology and protein chemistry. 2019-05-04.
  24. "GOR IV SECONDARY STRUCTURE PREDICTION METHOD". PRAB- Gerland Rhone-Alpes Bioinformatics Pole Gerland Site - Institute of biology and protein chemistry. 2019-05-04.
  25. "BLAT Search Genome". University of California Santa Cruz Genome Institute - UCSC Genome Browser-Blat. 2019-05-05.
  26. 1 2 3 "Standard Protein BLAST". NCBI - Protein BLAST. 2019-05-05.
  27. "HomoloGene". NCBI - HomoloGene. 2019-05-05. Archived from the original on July 8, 2025.
  28. "TimeTree of Life". Timetree The Timescale of Life. 2019-05-05.
  29. Russ C, Lang BF, Chen Z, Gujja S, Shea T, Zeng Q, Young S, Cuomo CA, Nusbaum C (August 2016). "Genome Sequence of Spizellomyces punctatus". Genome Announcements. 4 (4): e00849-16. doi:10.1128/genomeA.00849-16. PMC   4991717 . PMID   27540072.
  30. "Genomatix". Genomatix Software Suite v3.10. 2019-05-05.[ permanent dead link ]
  31. "EST Profile - Hs.517612 - C22orf23". NCBI - Unigene. 2019-05-05.[ dead link ]
  32. "C22orf23 chromosome 22 open reading frame 23 [ Homo sapiens (human) ]". NCBI - Gene. 2019-05-05.
  33. "C22orf23". The Human Protein Atlas. 2019-05-05.
  34. "RGD1359634 similar to RIKEN cDNA 1700088E04 [ Rattus norvegicus (Norway rat) ]". NCBI - Gene. 2019-05-05.
  35. "1700088E04Rik RIKEN cDNA 1700088E04 gene [ Mus musculus (house mouse) ]". NCBI - Gene. 2019-05-05.
  36. 1 2 "NCBI". National Center for Biotechnology Information - NCBI. 2019-05-05.
  37. "PSICQUIC View". EMBL-EBI. 2019-05-05.
  38. "Mentha". Mentha The interactome browser. 2019-05-05.
  39. "String". STRING Database. 2019-05-05.
  40. Gao HJ, Chen YJ, Zuo D, Xiao MM, Li Y, Guo H, Zhang N, Chen RB (September 2015). "Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum". Cancer Biology & Medicine. 12 (3): 246–54. doi:10.7497/j.issn.2095-3941.2015.0010. PMC   4607824 . PMID   26487969.
  41. Wenzhi H, Ruijin W, Jieliang L, Xiaoyan M, Haibo L, Xiaoman W, Jiajia X, Shaoying L, Shuanglin L, Qing L (October 2015). "Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II". International Journal of Pediatric Otorhinolaryngology. 79 (10): 1718–21. doi:10.1016/j.ijporl.2015.07.034. PMID   26296878.
  42. Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, Attie-Bitach T, Giurgea I, Skopinski L, Reardon W, Toutain A, Sarda P, Echaieb A, Lackmy-Port-Lis M, Touraine R, Amiel J, Goossens M, Pingault V (December 2007). "Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4". American Journal of Human Genetics. 81 (6): 1169–85. doi:10.1086/522090. PMC   2276340 . PMID   17999358.
  43. Pascal, Gellert (December 2014). "Abstract S1-04: Exome sequencing of post-menopausal ER+ breast cancer (BC) treated pre-surgically with aromatase inhibitors (AIs) in the POETIC trial (CRUK/07/015". Cancer Research. 75 (9 Supplement): S1-04. doi:10.1158/1538-7445.SABCS14-S1-04.
  44. Sharma P, Garg G, Kumar A, Mohammad F, Kumar SR, Tanwar VS, Sati S, Sharma A, Karthikeyan G, Brahmachari V, Sengupta S (May 2014). "Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients". Gene. 541 (1): 31–40. doi:10.1016/j.gene.2014.02.034. PMID   24582973.
  45. Luedi PP, Hartemink AJ, Jirtle RL (June 2005). "Genome-wide prediction of imprinted murine genes". Genome Research. 15 (6): 875–84. doi:10.1101/gr.3303505. PMC   1142478 . PMID   15930497.
  46. Ahn WS, Kim KW, Bae SM, Yoon JH, Lee JM, Namkoong SE, Kim JH, Kim CK, Lee YJ, Kim YW (December 2003). "Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis". International Journal of Experimental Pathology. 84 (6): 267–79. doi:10.1111/j.0959-9673.2003.00362.x. PMC   2517572 . PMID   14748746.
  47. "dbSNP Short Genetic Variations". NCBI. 2019-05-05.