Cochliobolus carbonum

Last updated

Cochliobolus carbonum
Bipolaris zeicola Northern leaf spot of maize UGA0176078.jpg
Northern leaf spot of maize on corn
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Pleosporales
Family: Pleosporaceae
Genus: Cochliobolus
Species:
C. carbonum
Binomial name
Cochliobolus carbonum
R.R. Nelson, (1959)
Synonyms

Bipolaris zeicola(G.L. Stout) Shoemaker,
Drechslera carbonum(Ullstrup) Sivan., (1984)
Drechslera zeicola(G.L. Stout) Subram. & B.L. Jain, (1966)
Helminthosporium carbonumUllstrup, (1944)
Helminthosporium zeicolaG.L. Stout, (1930)

Contents

Cochliobolus carbonum (anamorph: Helminthosporium carbonum) is one of more than 40 species of filamentous ascomycetes belonging to the genus Cochliobolus (anamorph: Bipolaris/Curvularia). This pathogen has a worldwide distribution, with reports from Australia, Brazil, Cambodia, Canada, China, Congo, Denmark, Egypt, India, Kenya, New Zealand, Nigeria, Solomon Islands, and the United States. Cochliobolus carbonum is one of the most aggressive members of this genus infecting sorghum (Sorghum spp. [Poaceae]), corn (Zea mays [Poaceae]) and apple (Malus domestica [Rosaceae]). [1] As one of the most devastating pathogens of sweet corn, C. carbonum causes Northern leaf spot and ear rot disease [1] while the asexual stage causes Helminthosporium corn leaf spot. [2] Cochliobolus carbonum is pathogenic to all organs of the corn plant including root, stalk, ear, kernel, and sheath. [3] However, symptoms of infection show distinct manifestations in different plant parts: whole plant - seedling blight affects the whole plant, leaf discoloration and mycelial growth, black fungal spores and lesions appear on inflorescences and glumes, and grain covered with very dark brown to black mycelium which gives a characteristic charcoal appearance due to the production of conidia.

Morphology and keys to identification

Cochliobolus carbonum is divided into at least five different races based on pathogenicity, particularly lesion types on corn leaves. [4] Cochliobolus carbonum race 0 (CCR0) is essentially non-pathogenic. [5] Cochliobolus carbonum race 1 (CCR1) produces host specific toxins and oval to circular spots on leaves. [6] While infection by C. carbonum race 2 (CCR2) is rare, it is characterized by the production of oblong, chocolate-colored spots. [7] C. carbonum race 3 (CCR3) produces linear and narrow lesions [6] while C. carbonum race 4 (CCR4) is weakly pathogenic, forming oval to concentric circular spots. [8]

The genus Cochliobolus is distinguished by the presence of dark to black ascomata with a unilocular, globose pseudothecium and a short, cylindrical neck. [1] Ascomata also bear hyphae and conidiophores and asci are bitunicate, 2-8 spored, and cylindrical to obclavate. [9] Ascomata are black, globose to ellipsoidal, and setae are present over the upper half of the wall mixed with conidiophores. Pseudoparaphyses are filiform, hyaline, septate, and branched. [10] The shapes of asci are cylindrical to clavate, short-stalked, straight to slightly curved having 1-8 spores, and vestigial bitunicate. [10] Conidia are straight to moderately curved, occasionally cylindrical but usually broad in the middle and tapering towards the rounded ends, distoseptate, and 36-100 X 12-18 μm. [11] The surface of the conidia is often granulose and the hilum is inconspicuous. Conidia are produced from the apex of an unbranched conidiophore. [11] Generally, the conidiophore arises singly or in small groups which are straight or flexuous, mid to dark brown, smooth, septate, cylindrical, and up to 250 μm long, 5-8 μm thick. [12] Variation in mycotoxin production by Cochliobolus species is used to distinguish some taxa and these mycotoxins are host-specific and non-host specific. HC toxin produced by C. carbonum race 1 and T toxin produced by C. heterostrophus are host-specific toxins while ophiobolins produced by C. miyabeanus and carbotoxin produced by C. carbonum are non-host-specific toxins. [9]

Reproductive biology

The species most closely related to C. carbonum is C. victoriae which have inter-specific fertility, however only 1% attempted crosses between species were fertile. [13] The sister relationship of these two species were evident based on phylogenetic analysis. [14] Cochliobolus carbonum is the sexual stage and can be obtained by pairing opposite mating single conidial isolates in Sach's agar media with sterilized maize leaf segments or barley grains incubated at 24 °C. [15]

Crosses between different species of Cochliobolus are possible, producing offspring differing in conidial morphology. [11] Horizontal and vertical gene transfer has occurred within and between fungal species of Cochliobolus and might be the reason for occurrence of highly virulent, toxin producing races of C. heterostrophus, C. carbonum and C. victoriae. [16] In nature, there is no evidence of gene flow among races of C. carbonum despite their sympatry. [17] The teleomorph of C. carbonum has not been observed in field conditions.

Habitat preference, life cycle, dispersal and symptoms development

Fungi are capable of showing different interactions with their host and different lifestyles depending upon the interaction. Different species of Cochliobolus and its anamorphs are associated with different host species as epiphytes, endophytes, saprophytes and pathogens. [1] Infected seed is the major source of inoculum of C. carbonum internationally, so it is a quarantined pathogen in Europe and other countries. To my knowledge, few studies have been conducted to better understand the life and infection cycle of C. carbonum. Cochliobolus carbonum survives as mycelium and resistant chlamydospores on maize debris in the field and on infected seed. Conidia serve as a primary source of inoculum dispersed by wind and rain-splash. Damp weather and moderate temperature greatly favor sporulation and produce additional inoculum for secondary spread. [18] During both pathogenic and saprophytic phases of the lifecycle, this fungus enters and ramifies through intact leaves and obtains nutrients from the host cytoplasm and walls by degrading cell wall components through the production of a variety of extracellular enzymes. [19] The symptoms first appear as small, circular to oval, reddish brown to tan lesions and over time become more tan to grayish. In general, moderate temperature, high relative humidity, and heavy dew during the growing season favors the development of this disease. [20] Senescent corn leaves are an important plant part for the growth and development of C. carbonum, because it provides biochemicals required for the formation of perithecia, asci and ascospores. [21]

Important developments in classification

Previously, many species of Cochliobolus were placed in Ophiobolus. Drechsler found that graminicolous forms of Helminthosporium produced teleomorphs with characteristic features of greater ascus and ascospore width as well as helicoid ascospores with bipolar germination, which deviates from previously described characters of Ophiobolus. To accommodate these species, he introduced the new genus Cochliobolus transferred several species to Cochliobolus. [22] Another genus Pseudocochliobolus was separated from Cochliobolus based on the presence of stromatic tissue below the ascomata and the degree of ascospore coiling. [23] The sexual states of Cochliobolus are only found associated with Bipolaris and Curvularia. Bipolaris and Curvularia share some morphological similarities and cannot be easily distinguished by any distinct taxonomic criteria. [9] Although few morphological differences were reported, conidia of Bipolaris are distoseptate while the conidia of Curvularia are bigger and euseptate. Some scientists believe that Bipolaris and Curvularia are synonymous, however there is an existing debate regarding this issue. [9] The different species of fungi belonging to Cochliobolus with asexual states in Bipolaris and Curvularia have undergone frequent name changes as a result of refinement to the taxonomy that has resulted in some confusion. [14] [24] [25] The perfect stage of this fungus was first named as C. carbonum by R. R. Nelson in 1959. The imperfect stage was named as Bipolariszeicola in 1959. The commonly used synonyms of Cochliobolus carbonum were Helminthosporium zeicola (1930), Helminthosporium carbornum (1944), Drechslera zeiocola (1966) and Drechslera carbonum (1984). Several phylogenetic studies of Bipolaris and Curvularia showed that Bipolaris is not monophyletic and some Bipolaris species are nested within Curvularia. [14] [24]

Phylogenetic affinities

The taxonomy of Cochliobolus, Bipolaris and Curvularia is confusing due to the frequent name changes and no clear morphological demarcation between Bipolaris and Curvularia. A phylogenetic analysis of Cochliobolus, Bipolaris and Curvularia species was performed using rDNA markers (ITS1, 5.8S, ITS2) and a 600 bp fragment of gpd (glyceraldehyde-3 dehydrogenase) gene. [14] The results showed that most isolates of Cochliobolus and Bipolaris including C. carbonum, that cause serious crop losses, form a separate group from other species. [14] These data revealed that these species radiated form a common ancestor recently. [14] Another phylogenetic study was conducted using a combined analysis of rDNA ITS (internal transcribed spacer), GPDH (glyceraldehyde 3-phosphate dehydrogenase), LSU (large subunit) and EF1-α (translation elongation factor 1-α) and showed that this generic group is divided into two major lineages. [24] According to their study Bipolaris and Cochliobolus species grouped with their type species and Curvularia species, with its generic type, form another group. [24] Similar to previous findings, the analyses showed that Bipolaris and Curvularia cannot be combined into a single monophyletic genus and trees showed both of these groups resolved into single complex. [24] In this paper, the authors claim that they have resolved nomenclatural conflict within this complex based on their phylogenetic data and suggest giving priority to the more commonly used generic names Bipolaris and Curvularia to represent these distinct lineages. [24]

Related Research Articles

Blight refers to a specific symptom affecting plants in response to infection by a pathogenic organism.

<i>Curvularia</i> Genus of fungi

Curvularia is a genus of hyphomycete (mold) fungi which can be pathogens but also act as beneficial partners of many plant species. They are common in soil. Most Curvularia species are found in tropical regions, though a few are found in temperate zones.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

<i>Cochliobolus sativus</i> Species of fungus

The fungus Cochliobolus sativus is the teleomorph of Bipolaris sorokiniana (anamorph) which is the causal agent of a wide variety of cereal diseases. The pathogen can infect and cause disease on roots, leaf and stem, and head tissue. C. sativus is extremely rare in nature and thus it is the asexual or anamorphic stage which causes infections. The two most common diseases caused by B. sorokiniana are spot blotch and common root rot, mainly on wheat and barley crops.

<i>Cochliobolus</i> Genus of fungi

The fungal genus Cochliobolus includes 19 species, it includes some plant pathogenic species such as Cochliobolus heterostrophus. A lot of former Cochliobolus species were transferred to either Curvularia or Bipolaris genera.

This is a glossary of some of the terms used in phytopathology.

<i>Botryosphaeria dothidea</i> Species of fungus

Botryosphaeria dothidea is a plant pathogen that causes the formation of cankers on a wide variety of tree and shrub species. It has been reported on several hundred plant hosts and on all continents except Antarctica. B. dothidea was redefined in 2004, and some reports of its host range from prior to that time likely include species that have since been placed in another genus. Even so, B. dothidea has since been identified on a number of woody plants—including grape, mango, olive, eucalyptus, maple, and oak, among others—and is still expected to have a broad geographical distribution. While it is best known as a pathogen, the species has also been identified as an endophyte, existing in association with plant tissues on which disease symptoms were not observed. It can colonize some fruits, in addition to woody tissues.

<i>Pyrenophora tritici-repentis</i> Species of fungus

Pyrenophora tritici-repentis (teleomorph) and Drechslera tritici-repentis (anamorph) is a necrotrophic plant pathogen of fungal origin, phylum Ascomycota. The pathogen causes a disease originally named yellow spot but now commonly called tan spot, yellow leaf spot, yellow leaf blotch or helminthosporiosis. At least eight races of the pathogen are known to occur based on their virulence on a wheat differential set.

<i>Bipolaris sacchari</i> Species of fungus

Bipolaris sacchari is a fungal plant pathogen in the family Pleosporaceae.

<i>Cochliobolus heterostrophus</i> Species of fungus

Cochliobolus heterostrophus is a fungal plant pathogen. It can cause southern corn leaf blight in maize.

<i>Cochliobolus lunatus</i> Fungal plant pathogen

Cochliobolus lunatus is a fungal plant pathogen that can cause disease in humans and other animals. The anamorph of this fungus is known as Curvularia lunata, while C. lunatus denotes the teleomorph or sexual stage. They are, however, the same biological entity. C. lunatus is the most commonly reported species in clinical cases of reported Cochliobolus infection.

<i>Setosphaeria rostrata</i> Pathogenic fungus

Setosphaeria rostrata is a heat tolerant fungus with an asexual reproductive form (anamorph) known as Exserohilum rostratum. This fungus is a common plant pathogen, causing leaf spots as well as crown rot and root rot in grasses. It is also found in soils and on textiles in subtropical and tropical regions. Exserohilum rostratum is one of the 35 Exserohilum species implicated uncommonly as opportunistic pathogens of humans where it is an etiologic agent of sinusitis, keratitis, skin lesions and an often fatal meningoencephalitis. Infections caused by this species are most often seen in regions with hot climates like Israel, India and the southern USA.

Mycosphaerella musicola is a fungal plant pathogen, which is the causal agent of Yellow Sigatoka leaf spot disease on banana plants.

<span class="mw-page-title-main">Pleosporaceae</span> Family of fungi

Pleosporaceae is a family of sac fungi. They are pathogenic to humans or saprobic on woody and dead herbaceous stems or leaves.

Podonectria is a genus in the monotypic Podonectriaceae family of fungi. They are parasitic fungus on scale insects, other fungi, or on substrates that had previously colonized by other fungi.

<span class="mw-page-title-main">Corn grey leaf spot</span> Fungal disease of maize

Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.

<span class="mw-page-title-main">Southern corn leaf blight</span> Fungal disease of maize

Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.

Curvularia pallescens is a soil fungus, that commonly grows on crops found in tropical regions. The conidia of the fungus are distinguishable from those of related species due to their lack of curvature. C. pallescens has been reported to cause infection in plants, and in immunocompetent individuals. This species is the anamorph of Cochliobolus pallescens.

Curvularia inaequalis is a plant saprobe that resides in temperate and subtropical environments. It is commonly found in the soils of forage grasses and grains. The species has been observed in a broad distribution of countries including Turkey, France, Canada, The United States, Japan and India. This species is dematiaceous and a hyphomycete.

Curvularia geniculata is a fast-growing anamorphic fungus in the division Ascomycota, most commonly found in soil, especially in areas of warmer climates. The fungus is a pathogen, mainly causing plant and animal infections, and rarely causing human infections. C. geniculata is characterized by its curved conidia, which has a dark brown centre and pale tapered tips, and produces anti-fungal compounds called Curvularides A-E.

References

  1. 1 2 3 4 Manamgoda, D., Cai, L., Bahkali, A., Chukeatirote, E., and Hyde, K. (2011). Cochliobolus: an overview and current status of species. Fungal Diversity 51, 3-42.
  2. Jones, M.J. and L.D. Dunkle, Analysis of Cochliobolus carbonum races by PCR amplification with arbitrary and gene specific primers. Phytopathology, 1993. 83(4): p. 366-370.
  3. Sindhu, A., et al., A guardian of grasses: Specific origin and conservation of a unique disease-resistance gene in the grass lineage. Proceedings of the National Academy of Sciences, 2008. 105(5): p. 1762-1767.
  4. Lu, C., et al., Identification of races and mating types of Cochliobolus carbonum from corn in the yunnan province in China. Journal of Phytopathology, 2013: p. n/a-n/a.
  5. Welz, H.G. and K.J. Leonard, Phenotypic variation and parasitic fitness of races of Cochliobolus carbonum on corn in North Carolina. Phytopathology, 1993. 83(6): p. 593-601.
  6. 1 2 Tsukiboshi, T., T. Kimigafukuro, and T. Sato, Identification of races of Bipolaris zeicola, the casual fungus of Helminthosporium leaf spot on corn in Japan. Annals of the Phytopathological Society of Japan, 1987. 53(5): p. 647-649.
  7. Welz, G. and K.J. Leonard, Genetic variation in field population of race 0, 2 and 3 of Bipolaris zeicola in 1987. Phytopathology, 1988. 78: p. 1574.
  8. Dodd, J.L. and A.L. Hooker, Previously undescribed pathotype of Bipolaris zeicola on corn. Plant Disease, 1990. 74(7): p. 530.
  9. 1 2 3 4 Sivanesan, A., Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycologia, 1987. 158: p. 1-261.
  10. 1 2 Navi, S.S., et al., A pictorial guide for the identification of mold fungi on sorghum grain. Information Bulletin, International Crops Research Institute for Semi Arid Tropics, Patancheru, Andhra Pradesh, India., 1999. 58.
  11. 1 2 3 Nelson, R.R., The genetic control of conidial morphology and arrangement in Cochliobolus carbonum. Mycologia 1966. 58(2): p. 208-214.
  12. Nelson, R.R., A major gene locus for compatibility in Cochliobolus heterostrophus Phytopathology 1957. 47: p. 742-743.
  13. Nelson, R.R., The genetics of compatibility in Cochliobolus carbonum. Phytopathology, 1960. 50(2): p. 158-160.
  14. 1 2 3 4 5 6 Berbee, M.L., M. Pirseyedi, and S. Hubbard, Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 1999. 91(6): p. 964-977.
  15. Nelson, R.R., Cochliobolus carbonum, the perfect stage of Helminthosporium carbonum. Phytopathology, 1959. 49: p. 807-810.
  16. Turgeon, B.G. and M. Berbee, Evolution of pathogenic and reproductive strategies in Cochliobolus and related genera, in Molecular Genetics of Host-Specific Toxins in Plant Disease, K. Kohmoto and O. Yoder, Editors. 1998, Springer Netherlands. p. 153-163.
  17. Simcox, K.D., D. Nickrent, and W.L. Pedersen, Comparison of isozyme polymorphism in races of Cochliobolus carbonum. Phytopathology, 1992.
  18. Smith, I.M., et al., Cochliobolus carbonum Data sheets on quarantine pests, 1992.
  19. Gorlach, J.M., E. Van der Knaap, and J.D. Walton, Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum. Applied and Environmental Microbiology, 1998. 64(2): p. 385-391.
  20. Sweets, L. and S. Wright, Corn disease- integrated pest management. Extension publications (MU), 2008.
  21. Fries, R.E. and R.R. Nelson, The influence of extracts from senescent corn leaves on sexual reproduction in Cochliobolus carbonum. Canadian Journal of Microbiology, 1972. 18(2): p. 199-205.
  22. Alcorn, J.L., On the genera Cochliobolus and Pseudocochliobolus. Mycotaxon, 1983. 16(2).
  23. Tsuda, M., A. Ueyama, and N. Nishihara, Pseudocochliobolus nisikadoi, the perfect state of Helminthosporium coicis. Mycologia, 1977. 69: p. 1109-1120.
  24. 1 2 3 4 5 6 Manamgoda, D., et al., A phylogenetic and taxonomic re-evaluation of the Bipolaris - Cochliobolus - Curvularia Complex. Fungal Diversity, 2012. 56(1): p. 131-144.
  25. Sivanesan, A., The bitunicate ascomycetes and their anamorphs. 1984: Cramer.