Congenital nephrotic syndrome

Last updated
Congenital nephrotic syndrome
Specialty Nephrology   OOjs UI icon edit-ltr-progressive.svg

Congenital nephrotic syndrome is a rare kidney disease which manifests in infants during the first 3 months of life, and is characterized by high levels of protein in the urine (proteinuria), low levels of protein in the blood, and swelling. [1] This disease is primarily caused by genetic mutations which result in damage to components of the glomerular filtration barrier and allow for leakage of plasma proteins into the urinary space. [2]

Contents

Signs and symptoms

Urine protein loss leads to total body swelling (generalized edema) and abdominal distension in the first several weeks to months of life. [1] Fluid retention may lead to cough (from pulmonary edema), ascites, and widened cranial sutures and fontanelles. [1] High urine protein loss can lead to foamy appearance of urine. Infants may be born prematurely with low birth weight, and have meconium stained amniotic fluid or a large placenta. [1] [3]

Complications

[1] [3]

Causes

Primary (genetic) causes

Mutations in the following five genes account for greater than 80% of the genetic causes of congenital nephrotic syndrome: [1]

Secondary Causes

Diagnosis

An examination reveals massive fluid retention and generalized swelling. Abnormal sounds are heard when listening to the heart and lungs with a stethoscope. Blood pressure may be high. The patient may have signs of malnutrition.[ citation needed ]

A urinalysis reveals large amounts of protein and sometimes small amounts of blood in the urine. [4] Kidney function may be normal in the first weeks or months of life. [3] Laboratory studies show low serum levels of protein (albumin) and immunoglobulins, and elevated levels of triglycerides and cholesterol. [1] Blood work may also show thyroid and vitamin D deficiency. [1] Kidneys on ultrasound imaging may appear enlarged and brighter (hyperechoic). [4] The disorder can be screened during pregnancy by finding elevated levels of alpha-fetoprotein on a routine sampling of amniotic fluid. [3]

Indication for kidney biopsy remains unclear as histologic findings do no reveal the cause of congenital nephrotic syndrome, but findings may help in developing treatment strategies. [1] [2] Findings on light microscopy can vary from minimal change nephropathy to focal segmental glomerulosclerosis or diffuse mesangial sclerosis. [3] [4] Electron microscopy shows podocyte disruption (loss of podocyte foot processes or slit diaphragm). [3] [4]

Genetic analysis and infectious workup are needed to determine the precise cause of congenital nephrotic syndrome. [1] Understanding the underlying cause can assist in disease management, prognosis, and genetic counseling. [1]

Treatment

Genetic forms of nephrotic syndrome are typically resistant to steroid and other immunosuppressive treatment. [4] Goals of therapy are to control urinary protein loss and swelling, provide good nutrition to allow the child to grow, and prevent complications. [1] Early and aggressive treatment is required to control the disorder.

Patients with severe urine protein loss require albumin infusions help replace protein loss and diuretic medications help rid the body of excess fluid. [3] For patients with mild to moderate urine protein losses, ACE inhibitor medications (like Captopril and others) and non-steroidal anti-inflammatory drugs (like indomethacin) are used to slow the spilling of protein (albumin) in the urine. [3] [4] Removal of the kidneys (one at the time or both) can decrease protein loss and limit the number of albumin infusions needed. [1] [4] Infants with WT1 mutations will undergo bilateral kidney removal to prevent development of Wilms' tumor. [4]

Antibiotics may be needed to control infections. Immunizations are recommended after kidney removal but prior to transplantation. [3] Patients may also take iron supplements, potassium chloride, thyroxine and other vitamins to replenish what minerals the kidneys have leaked out. Anticoagulants (such as aspirin, dipyridamole, and warfarin) are used to prevent clot formation. [2] [3]

Dietary modifications may include the restriction of sodium and use of dietary supplements as appropriate for the nature and extent of malnutrition. Fluids may be restricted to help control swelling. Children with this disease require diets high in calories and protein, and many patients require a feeding tube (nasogastric tube or gastrostomy tube (g-tube)) for medication and/or feeds. [3] Some patients develop oral aversions and will use the tube for all feeds. Other patients eat well and only use the tube for medicine or supplemental feeds. The tube is also useful for patients needing to drink large amounts of fluids around the time of transplant.[ citation needed ]

While infants with infectious causes of congenital nephrotic syndrome may improve with antibiotics or antiviral medications, those with genetic causes progress to end-stage renal disease and require dialysis, and ultimately a kidney transplant. [1] [2] [3] [4]

Prognosis

Congenital nephrotic syndrome can be successfully controlled with early diagnosis and aggressive treatment including albumin infusions, nephrectomy, and medications. Affected children have rapid decline in kidney function resulting in end-stage renal disease within the first years of life, and require treatment with dialysis and kidney transplantation. [1] [4] Most children live fairly normal life post-transplant but will spend significant time hospitalised pre-transplant and have numerous surgeries to facilitate treatment. Kidney transplantation outcomes for children with congenital nephrotic syndrome are similar to those of other patient groups. [1] [2] Nephrotic syndrome typically does not reoccur following kidney transplantation, however recurrences have been seen in children with NPHS1 mutations who develop anti-nephrin antibodies. [1] [3] [4]

Due to the protein (albumin) losses many patients have reduced muscle tone and may experience delays in certain physical milestones such as sitting, crawling and walking. Similarly many patients experience growth delays due to protein loss. Delays vary from mild to significant but most patients experience growth spurts once they receive their transplanted kidney. Physical therapy may be useful for the child to strengthen muscle tone. Children who have a history of stroke from thrombotic complications can have neurologic delays. [1]

Undiagnosed cases are often fatal in the first year due to blood clots, infections or other complications.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Kidney</span> Organ that filters blood and produces urine in humans

In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder.

Albuminuria is a pathological condition wherein the protein albumin is abnormally present in the urine. It is a type of proteinuria. Albumin is a major plasma protein ; in healthy people, only trace amounts of it are present in urine, whereas larger amounts occur in the urine of patients with kidney disease. For a number of reasons, clinical terminology is changing to focus on albuminuria more than proteinuria.

<span class="mw-page-title-main">Proteinuria</span> Presence of an excess of serum proteins in the urine

Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein, less than 150 mg/day; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy. Severe proteinuria can cause nephrotic syndrome in which there is worsening swelling of the body.

<span class="mw-page-title-main">Nephrotic syndrome</span> Symptoms resulting from kidney damage

Nephrotic syndrome is a collection of symptoms due to kidney damage. This includes protein in the urine, low blood albumin levels, high blood lipids, and significant swelling. Other symptoms may include weight gain, feeling tired, and foamy urine. Complications may include blood clots, infections, and high blood pressure.

<span class="mw-page-title-main">Alport syndrome</span> Medical condition

Alport syndrome is a genetic disorder affecting around 1 in 5,000–10,000 children, characterized by glomerulonephritis, end-stage kidney disease, and hearing loss. Alport syndrome can also affect the eyes, though the changes do not usually affect vision, except when changes to the lens occur in later life. Blood in urine is universal. Proteinuria is a feature as kidney disease progresses.

<span class="mw-page-title-main">Podocyte</span> Type of kidney cell

Podocytes are cells in Bowman's capsule in the kidneys that wrap around capillaries of the glomerulus. Podocytes make up the epithelial lining of Bowman's capsule, the third layer through which filtration of blood takes place. Bowman's capsule filters the blood, retaining large molecules such as proteins while smaller molecules such as water, salts, and sugars are filtered as the first step in the formation of urine. Although various viscera have epithelial layers, the name visceral epithelial cells usually refers specifically to podocytes, which are specialized epithelial cells that reside in the visceral layer of the capsule.

<span class="mw-page-title-main">Diabetic nephropathy</span> Chronic loss of kidney function

Diabetic nephropathy, also known as diabetic kidney disease, is the chronic loss of kidney function occurring in those with diabetes mellitus. Diabetic nephropathy is the leading causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) globally. The triad of protein leaking into the urine, rising blood pressure with hypertension and then falling renal function is common to many forms of CKD. Protein loss in the urine due to damage of the glomeruli may become massive, and cause a low serum albumin with resulting generalized body swelling (edema) so called nephrotic syndrome. Likewise, the estimated glomerular filtration rate (eGFR) may progressively fall from a normal of over 90 ml/min/1.73m2 to less than 15, at which point the patient is said to have end-stage renal disease. It usually is slowly progressive over years.

<span class="mw-page-title-main">Minimal change disease</span> Kidney disease causing nephrotic syndrome

Minimal change disease (MCD), also known as lipoid nephrosis or nil disease, among others, is a disease affecting the kidneys which causes nephrotic syndrome. Nephrotic syndrome leads to the loss of significant amounts of protein to the urine (proteinuria), which causes the widespread edema and impaired kidney function commonly experienced by those affected by the disease. It is most common in children and has a peak incidence at 2 to 6 years of age. MCD is responsible for 10–25% of nephrotic syndrome cases in adults. It is also the most common cause of nephrotic syndrome of unclear cause (idiopathic) in children.

<span class="mw-page-title-main">Focal segmental glomerulosclerosis</span> Kidney disease

Focal segmental glomerulosclerosis (FSGS) is a histopathologic finding of scarring (sclerosis) of glomeruli and damage to renal podocytes. This process damages the filtration function of the kidney, resulting in protein presence in the urine due to protein loss. FSGS is a leading cause of excess protein loss—nephrotic syndrome—in children and adults in the US. Signs and symptoms include proteinuria and edema. Kidney failure is a common long-term complication of the disease. FSGS can be classified as primary, secondary, or genetic, depending on whether a particular toxic or pathologic stressor or genetic predisposition can be identified as the cause. Diagnosis is established by renal biopsy, and treatment consists of glucocorticoids and other immune-modulatory drugs. Response to therapy is variable, with a significant portion of patients progressing to end-stage kidney failure. An American epidemiological study 20 years ago demonstrated that FSGS is estimated to occur in 7 persons per million, with cisgender male African-Americans at higher risk.

<span class="mw-page-title-main">Renal vein thrombosis</span> Medical condition

Renal vein thrombosis (RVT) is the formation of a clot in the vein that drains blood from the kidneys, ultimately leading to a reduction in the drainage of one or both kidneys and the possible migration of the clot to other parts of the body. First described by German pathologist Friedrich Daniel von Recklinghausen in 1861, RVT most commonly affects two subpopulations: newly born infants with blood clotting abnormalities or dehydration and adults with nephrotic syndrome.

<span class="mw-page-title-main">Hypoalbuminemia</span> Abnormally low levels of albumin in the blood

Hypoalbuminemia is a medical sign in which the level of albumin in the blood is low. This can be due to decreased production in the liver, increased loss in the gastrointestinal tract or kidneys, increased use in the body, or abnormal distribution between body compartments. Patients often present with hypoalbuminemia as a result of another disease process such as malnutrition as a result of severe anorexia nervosa, sepsis, cirrhosis in the liver, nephrotic syndrome in the kidneys, or protein-losing enteropathy in the gastrointestinal tract. One of the roles of albumin is being the major driver of oncotic pressure in the bloodstream and the body. Thus, hypoalbuminemia leads to abnormal distributions of fluids within the body and its compartments. As a result, associated symptoms include edema in the lower legs, ascites in the abdomen, and effusions around internal organs. Laboratory tests aimed at assessing liver function diagnose hypoalbuminemia. Once identified, it is a poor prognostic indicator for patients with a variety of different diseases. Yet, it is only treated in very specific indications in patients with cirrhosis and nephrotic syndrome. Treatment instead focuses on the underlying cause of the hypoalbuminemia. Albumin is an acute negative phase respondent and not a reliable indicator of nutrition status.

<span class="mw-page-title-main">Bartter syndrome</span> Medical condition

Bartter syndrome (BS) is a rare inherited disease characterised by a defect in the thick ascending limb of the loop of Henle, which results in low potassium levels (hypokalemia), increased blood pH (alkalosis), and normal to low blood pressure. There are two types of Bartter syndrome: neonatal and classic. A closely associated disorder, Gitelman syndrome, is milder than both subtypes of Bartter syndrome.

<span class="mw-page-title-main">Galloway–Mowat syndrome</span> Medical condition

Galloway–Mowat syndrome is a very rare autosomal recessive genetic disorder, consisting of a variety of features including hiatal hernia, microcephaly and nephrotic syndrome.

<span class="mw-page-title-main">Nephrin</span> Mammalian protein found in Homo sapiens

Nephrin is a protein necessary for the proper functioning of the renal filtration barrier. The renal filtration barrier consists of fenestrated endothelial cells, the glomerular basement membrane, and the podocytes of epithelial cells. Nephrin is a transmembrane protein that is a structural component of the slit diaphragm. It is present on the tips of the podocytes as an intricate mesh connecting adjacent foot processes. Nephrin contributes to the strong size selectivity of the slit diaphragm, however, the relative contribution of the slit diaphragm to exclusion of protein by the glomerulus is debated. The extracellular interactions, both homophilic and heterophilic—between nephrin and NEPH1—are not completely understood. In addition to eight immunoglobulin G–like motifs and a fibronectin type 3 repeat, nephrin has a single transmembrane domain and a short intracellular tail. Tyrosine phosphorylation at different sites on the intracellular tail contribute to the regulation of slit diaphragm formation during development and repair in pathology affecting podocytes. Podocin may interact with nephrin to guide it onto lipid rafts in podocytes, requiring the integrity of an arginine residue of nephrin at position 1160.

Podocin is a protein component of the filtration slits of podocytes. Glomerular capillary endothelial cells, the glomerular basement membrane and the filtration slits function as the filtration barrier of the kidney glomerulus. Mutations in the podocin gene NPHS2 can cause nephrotic syndrome, such as focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD). Symptoms may develop in the first few months of life or later in childhood.

<span class="mw-page-title-main">Dent's disease</span> Medical condition

Dent's disease is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urine, formation of calcium kidney stones, nephrocalcinosis, and chronic kidney failure.

Frasier syndrome is a urogenital anomaly associated with the WT1 gene.

Glomerulonephrosis is a non-inflammatory disease of the kidney (nephrosis) presenting primarily in the glomerulus as nephrotic syndrome. The nephron is the functional unit of the kidney and it contains the glomerulus, which acts as a filter for blood to retain proteins and blood lipids. Damage to these filtration units results in important blood contents being released as waste in urine. This disease can be characterized by symptoms such as fatigue, swelling, and foamy urine, and can lead to chronic kidney disease and ultimately end-stage renal disease, as well as cardiovascular diseases. Glomerulonephrosis can present as either primary glomerulonephrosis or secondary glomerulonephrosis.

<span class="mw-page-title-main">Sickle cell nephropathy</span> Medical condition

Sickle cell nephropathy is a type of kidney disease associated with sickle cell disease which causes kidney complications as a result of sickling of red blood cells in the small blood vessels. The hypertonic and relatively hypoxic environment of the renal medulla, coupled with the slow blood flow in the vasa recta, favors sickling of red blood cells, with resultant local infarction. Functional tubule defects in patients with sickle cell disease are likely the result of partial ischemic injury to the renal tubules.

<span class="mw-page-title-main">Epstein syndrome</span> Medical condition

Epstein syndrome is a rare genetic disease characterized by a mutation in the MYH9 gene in nonmuscle myosin. This disease affects the patient's renal system and can result in kidney failure. Epstein syndrome was first discovered in 1972 when two families had similar symptoms to Alport syndrome. Epstein syndrome and other Alport-like disorders were seen to be caused by mutations in the MYH9 gene, however, Epstein syndrome differs as it was more specifically linked to a mutation on the R702 codon on the MYH9 gene. Diseases with mutations on the MYH9 gene also include May–Hegglin anomaly, Sebastian syndrome and Fechtner syndrome.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Holmberg C, Jalanko H (2016). Congenital nephrotic syndrome. Vol. 24. Berlin, Heidelberg: Springer. pp. 753–776. doi:10.1007/978-3-662-43596-0_78. ISBN   978-3-662-43595-3. PMC   2753773 . PMID   17968594.{{cite book}}: |work= ignored (help)
  2. 1 2 3 4 5 Jalanko H (November 2009). "Congenital nephrotic syndrome". Pediatric Nephrology. 24 (11): 2121–8. doi:10.1007/s00467-007-0633-9. PMC   2753773 . PMID   17968594.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Kher KK, Schnaper HW, Greenbaum LA (2017). Clinical pediatric nephrology (Third ed.). Boca Raton. ISBN   978-1-315-38231-9. OCLC   959552380.{{cite book}}: CS1 maint: location missing publisher (link)
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Weber S (2008). Hereditary Nephrotic Syndrome. Elsevier. pp. 219–228. ISBN   978-0-323-04883-5.{{cite book}}: |work= ignored (help)