Cubic surface

Last updated

In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface

Contents

in . Many properties of cubic surfaces hold more generally for del Pezzo surfaces.

A smooth cubic surface (the Clebsch surface) Clebsch Cubic.png
A smooth cubic surface (the Clebsch surface)

Rationality of cubic surfaces

A central feature of smooth cubic surfaces X over an algebraically closed field is that they are all rational, as shown by Alfred Clebsch in 1866. [1] That is, there is a one-to-one correspondence defined by rational functions between the projective plane minus a lower-dimensional subset and X minus a lower-dimensional subset. More generally, every irreducible cubic surface (possibly singular) over an algebraically closed field is rational unless it is the projective cone over a cubic curve. [2] In this respect, cubic surfaces are much simpler than smooth surfaces of degree at least 4 in , which are never rational. In characteristic zero, smooth surfaces of degree at least 4 in are not even uniruled. [3]

More strongly, Clebsch showed that every smooth cubic surface in over an algebraically closed field is isomorphic to the blow-up of at 6 points. [4] As a result, every smooth cubic surface over the complex numbers is diffeomorphic to the connected sum , where the minus sign refers to a change of orientation. Conversely, the blow-up of at 6 points is isomorphic to a cubic surface if and only if the points are in general position, meaning that no three points lie on a line and all 6 do not lie on a conic. As a complex manifold (or an algebraic variety), the surface depends on the arrangement of those 6 points.

27 lines on a cubic surface

Most proofs of rationality for cubic surfaces start by finding a line on the surface. (In the context of projective geometry, a line in is isomorphic to .) More precisely, Arthur Cayley and George Salmon showed in 1849 that every smooth cubic surface over an algebraically closed field contains exactly 27 lines. [5] This is a distinctive feature of cubics: a smooth quadric (degree 2) surface is covered by a continuous family of lines, while most surfaces of degree at least 4 in contain no lines. Another useful technique for finding the 27 lines involves Schubert calculus which computes the number of lines using the intersection theory of the Grassmannian of lines on .

As the coefficients of a smooth complex cubic surface are varied, the 27 lines move continuously. As a result, a closed loop in the family of smooth cubic surfaces determines a permutation of the 27 lines. The group of permutations of the 27 lines arising this way is called the monodromy group of the family of cubic surfaces. A remarkable 19th-century discovery was that the monodromy group is neither trivial nor the whole symmetric group ; it is a group of order 51840, acting transitively on the set of lines. [4] This group was gradually recognized (by Élie Cartan (1896), Arthur Coble (1915-17), and Patrick du Val (1936)) as the Weyl group of type , a group generated by reflections on a 6-dimensional real vector space, related to the Lie group of dimension 78. [4]

The same group of order 51840 can be described in combinatorial terms, as the automorphism group of the graph of the 27 lines, with a vertex for each line and an edge whenever two lines meet. [6] This graph was analyzed in the 19th century using subgraphs such as the Schläfli double six configuration. The complementary graph (with an edge whenever two lines are disjoint) is known as the Schläfli graph.

The Schlafli graph Schlafli graph.svg
The Schläfli graph

Many problems about cubic surfaces can be solved using the combinatorics of the root system. For example, the 27 lines can be identified with the weights of the fundamental representation of the Lie group . The possible sets of singularities that can occur on a cubic surface can be described in terms of subsystems of the root system. [7] One explanation for this connection is that the lattice arises as the orthogonal complement to the anticanonical class in the Picard group , with its intersection form (coming from the intersection theory of curves on a surface). For a smooth complex cubic surface, the Picard lattice can also be identified with the cohomology group .

An Eckardt point is a point where 3 of the 27 lines meet. Most cubic surfaces have no Eckardt point, but such points occur on a codimension-1 subset of the family of all smooth cubic surfaces. [8]

Given an identification between a cubic surface on X and the blow-up of at 6 points in general position, the 27 lines on X can be viewed as: the 6 exceptional curves created by blowing up, the birational transforms of the 15 lines through pairs of the 6 points in , and the birational transforms of the 6 conics containing all but one of the 6 points. [9] A given cubic surface can be viewed as a blow-up of in more than one way (in fact, in 72 different ways), and so a description as a blow-up does not reveal the symmetry among all 27 of the lines.

The relation between cubic surfaces and the root system generalizes to a relation between all del Pezzo surfaces and root systems. This is one of many ADE classifications in mathematics. Pursuing these analogies, Vera Serganova and Alexei Skorobogatov gave a direct geometric relation between cubic surfaces and the Lie group . [10]

In physics, the 27 lines can be identified with the 27 possible charges of M-theory on a six-dimensional torus (6 momenta; 15 membranes; 6 fivebranes) and the group E6 then naturally acts as the U-duality group. This map between del Pezzo surfaces and M-theory on tori is known as mysterious duality.

Special cubic surfaces

The smooth complex cubic surface in with the largest automorphism group is the Fermat cubic surface, defined by

Its automorphism group is an extension , of order 648. [11]

The next most symmetric smooth cubic surface is the Clebsch surface, which can be defined in by the two equations

Its automorphism group is the symmetric group , of order 120. After a complex linear change of coordinates, the Clebsch surface can also be defined by the equation

in .

Cayley's nodal cubic surface Cayley cubic 2.png
Cayley's nodal cubic surface

Among singular complex cubic surfaces, Cayley's nodal cubic surface is the unique surface with the maximal number of nodes, 4:

Its automorphism group is , of order 24.

Real cubic surfaces

In contrast to the complex case, the space of smooth cubic surfaces over the real numbers is not connected in the classical topology (based on the topology of R). Its connected components (in other words, the classification of smooth real cubic surfaces up to isotopy) were determined by Ludwig Schläfli (1863), Felix Klein (1865), and H. G. Zeuthen (1875). [12] Namely, there are 5 isotopy classes of smooth real cubic surfaces X in , distinguished by the topology of the space of real points . The space of real points is diffeomorphic to either , or the disjoint union of and the 2-sphere, where denotes the connected sum of r copies of the real projective plane . Correspondingly, the number of real lines contained in X is 27, 15, 7, 3, or 3.

A smooth real cubic surface is rational over R if and only if its space of real points is connected, hence in the first four of the previous five cases. [13]

The average number of real lines on X is [14] when the defining polynomial for X is sampled at random from the Gaussian ensemble induced by the Bombieri inner product.


The moduli space of cubic surfaces

Two smooth cubic surfaces are isomorphic as algebraic varieties if and only if they are equivalent by some linear automorphism of . Geometric invariant theory gives a moduli space of cubic surfaces, with one point for each isomorphism class of smooth cubic surfaces. This moduli space has dimension 4. More precisely, it is an open subset of the weighted projective space P(12345), by Salmon and Clebsch (1860). In particular, it is a rational 4-fold. [15]

The cone of curves

The lines on a cubic surface X over an algebraically closed field can be described intrinsically, without reference to the embedding of X in : they are exactly the (−1)-curves on X, meaning the curves isomorphic to that have self-intersection −1. Also, the classes of lines in the Picard lattice of X (or equivalently the divisor class group) are exactly the elements u of Pic(X) such that and . (This uses that the restriction of the hyperplane line bundle O(1) on to X is the anticanonical line bundle , by the adjunction formula.)

For any projective variety X, the cone of curves means the convex cone spanned by all curves in X (in the real vector space of 1-cycles modulo numerical equivalence, or in the homology group if the base field is the complex numbers). For a cubic surface, the cone of curves is spanned by the 27 lines. [16] In particular, it is a rational polyhedral cone in with a large symmetry group, the Weyl group of . There is a similar description of the cone of curves for any del Pezzo surface.

Cubic surfaces over a field

A smooth cubic surface X over a field k which is not algebraically closed need not be rational over k. As an extreme case, there are smooth cubic surfaces over the rational numbers Q (or the p-adic numbers ) with no rational points, in which case X is certainly not rational. [17] If X(k) is nonempty, then X is at least unirational over k, by Beniamino Segre and János Kollár. [18] For k infinite, unirationality implies that the set of k-rational points is Zariski dense in X.

The absolute Galois group of k permutes the 27 lines of X over the algebraic closure of k (through some subgroup of the Weyl group of ). If some orbit of this action consists of disjoint lines, then X is the blow-up of a "simpler" del Pezzo surface over k at a closed point. Otherwise, X has Picard number 1. (The Picard group of X is a subgroup of the geometric Picard group .) In the latter case, Segre showed that X is never rational. More strongly, Yuri Manin proved a birational rigidity statement: two smooth cubic surfaces with Picard number 1 over a perfect field k are birational if and only if they are isomorphic. [19] For example, these results give many cubic surfaces over Q that are unirational but not rational.

Singular cubic surfaces

In contrast to smooth cubic surfaces which contain 27 lines, singular cubic surfaces contain fewer lines. [20] Moreover, they can be classified by the type of singularity which arises in their normal form. These singularities are classified using Dynkin diagrams.

Classification

A normal singular cubic surface in with local coordinates is said to be in normal form if it is given by . Depending on the type of singularity contains, it is isomorphic to the projective surface in given by where are as in the table below. That means we can obtain a classification of all singular cubic surfaces. The parameters of the following table are as follows: are three distinct elements of , the parameters are in and is an element of . Notice that there are two different singular cubic surfaces with singularity . [21]

Classification of singular cubic surfaces by singularity type [21]
Singularity

In normal form, whenever a cubic surface contains at least one singularity, it will have an singularity at . [20]

Lines on singular cubic surfaces

According to the classification of singular cubic surfaces, the following table shows the number of lines each surface contains.

Lines on singular cubic surfaces [21]
Singularity
No. of lines21161112789455215731063631

Automorphism groups of singular cubic surfaces with no parameters

An automorphism of a normal singular cubic surface is the restriction of an automorphism of the projective space to . Such automorphisms preserve singular points. Moreover, they do not permute singularities of different types. If the surface contains two singularities of the same type, the automorphism may permute them. The collection of automorphisms on a cubic surface forms a group, the so-called automorphism group. The following table shows all automorphism groups of singular cubic surfaces with no parameters.

Automorphism groups of singular cubic surfaces with no parameters [21]
Singularity Automorphism group of
, the symmetric group of order

See also

Notes

  1. Reid (1988), Corollary 7.4.
  2. Kollár, Smith, Corti (2004), Example 1.28.
  3. Kollár, Smith, Corti (2004), Exercise 1.59.
  4. 1 2 3 Dolgachev (2012), Chapter 9, Historical notes.
  5. Reid (1988), section 7.6.
  6. Hartshorne (1997), Exercise V.4.11.
  7. Bruce & Wall (1979), section 4; Dolgachev (2012), Table 9.1.
  8. Dolgachev (2012), section 9.1.4.
  9. Hartshorne (1997), Theorem V.4.9.
  10. Serganova & Skorobogatov (2007).
  11. Dolgachev (2012), Table 9.6.
  12. Degtyarev and Kharlamov (2000), section 3.5.2. The various types of real cubic surfaces, and the lines on them, are pictured in Holzer & Labs (2006).
  13. Silhol (1989), section VI.5.
  14. Basu, S.; Lerario, A.; Lundberg, E.; Peterson, C. (2019). "Random fields and the enumerative geometry of lines on real and complex hypersurfaces". Mathematische Annalen. 374 (3–4): 1773–1810. arXiv: 1610.01205 . doi:10.1007/s00208-019-01837-0. S2CID   253717173.
  15. Dolgachev (2012), equation (9.57).
  16. Hartshorne (1997), Theorem V.4.11.
  17. Kollár, Smith, Corti (2004), Exercise 1.29.
  18. Kollár, Smith, Corti (2004), Theorems 1.37 and 1.38.
  19. Kollár, Smith, Corti (2004), Theorems 2.1 and 2.2.
  20. 1 2 Bruce, J. W.; Wall, C. T. C. (1979). "On the Classification of Cubic Surfaces". Journal of the London Mathematical Society. s2-19 (2): 245–256. doi:10.1112/jlms/s2-19.2.245. ISSN   1469-7750.
  21. 1 2 3 4 SAKAMAKI, YOSHIYUKI (2010). "Automorphism Groups on Normal Singular Cubic Surfaces with No Parameters". Transactions of the American Mathematical Society. 362 (5): 2641–2666. doi: 10.1090/S0002-9947-09-05023-5 . ISSN   0002-9947. JSTOR   25677798.

Related Research Articles

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

E<sub>6</sub> (mathematics) 78-dimensional exceptional simple Lie group

In mathematics, E6 is the name of some closely related Lie groups, linear algebraic groups or their Lie algebras , all of which have dimension 78; the same notation E6 is used for the corresponding root lattice, which has rank 6. The designation E6 comes from the Cartan–Killing classification of the complex simple Lie algebras (see Élie Cartan § Work). This classifies Lie algebras into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, and G2. The E6 algebra is thus one of the five exceptional cases.

In mathematics, in particular algebraic geometry, a moduli space is a geometric space whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857.

<span class="mw-page-title-main">Birational geometry</span> Field of algebraic geometry

In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a point at infinity. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point.

<span class="mw-page-title-main">K3 surface</span> Type of smooth complex surface of kodaira dimension 0

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface

In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two and so of dimension four as a smooth manifold.

Complex dynamics, or holomorphic dynamics, is the study of dynamical systems obtained by iterating a complex analytic mapping. This article focuses on the case of algebraic dynamics, where a polynomial or rational function is iterated. In geometric terms, that amounts to iterating a mapping from some algebraic variety to itself. The related theory of arithmetic dynamics studies iteration over the rational numbers or the p-adic numbers instead of the complex numbers.

In mathematics, the complex projective plane, usually denoted P2(C), is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates

In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

In mathematics, the Enriques–Kodaira classification is a classification of compact complex surfaces into ten classes. For each of these classes, the surfaces in the class can be parametrized by a moduli space. For most of the classes the moduli spaces are well understood, but for the class of surfaces of general type the moduli spaces seem too complicated to describe explicitly, though some components are known.

In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.

In mathematics, Enriques surfaces are algebraic surfaces such that the irregularity q = 0 and the canonical line bundle K is non-trivial but has trivial square. Enriques surfaces are all projective and are elliptic surfaces of genus 0. Over fields of characteristic not 2 they are quotients of K3 surfaces by a group of order 2 acting without fixed points and their theory is similar to that of algebraic K3 surfaces. Enriques surfaces were first studied in detail by Enriques (1896) as an answer to a question discussed by Castelnuovo (1895) about whether a surface with q = pg = 0 is necessarily rational, though some of the Reye congruences introduced earlier by Reye (1882) are also examples of Enriques surfaces.

In algebraic geometry, a Fano variety, introduced by Gino Fano in, is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties.

In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

<span class="mw-page-title-main">Riemann sphere</span> Model of the extended complex plane plus a point at infinity

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers.

The terminology of algebraic geometry changed drastically during the twentieth century, with the introduction of the general methods, initiated by David Hilbert and the Italian school of algebraic geometry in the beginning of the century, and later formalized by André Weil, Jean-Pierre Serre and Alexander Grothendieck. Much of the classical terminology, mainly based on case study, was simply abandoned, with the result that books and papers written before this time can be hard to read. This article lists some of this classical terminology, and describes some of the changes in conventions.

References