In electrochemistry, cyclic voltammetry (CV) is a type of potentiodynamic measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is reached in a CV experiment, the working electrode's potential is ramped in the opposite direction to return to the initial potential. These cycles of ramps in potential may be repeated as many times as needed. The current at the working electrode is plotted versus the applied voltage (that is, the working electrode's potential) to give the cyclic voltammogram trace. Cyclic voltammetry is generally used to study the electrochemical properties of an analyte in solution [1] [2] [3] [4] or of a molecule that is adsorbed onto the electrode.
In cyclic voltammetry (CV), the electrode potential ramps linearly versus time in cyclical phases (blue trace in Figure 2). The rate of voltage change over time during each of these phases is known as the experiment's scan rate (V/s). The potential is measured between the working electrode and the reference electrode, while the current is measured between the working electrode and the counter electrode. These data are plotted as current density (j) versus applied potential (E, often referred to as just 'potential'). In Figure 2, during the initial forward scan (from t0 to t1) an increasingly oxidation potential is applied; thus the anodic current will, at least initially, increase over this time period, assuming that there are oxidable analytes in the system. At some point after the oxidation potential of the analyte is reached, the anodic current will decrease as the concentration of oxidable analyte is depleted. If the redox couple is reversible, then during the reverse scan (from t1 to t2), the oxidized analyte will start to be re-reduced, giving rise to a current of reverse polarity (cathodic current) to before. The more reversible the redox couple is, the more similar the oxidation peak will be in shape to the reduction peak. Hence, CV data can provide information about redox potentials and electrochemical reaction rates.
For instance, if the electron transfer at the working electrode surface is fast and the current is limited by the diffusion of analyte species to the electrode surface, then the peak current will be proportional to the square root of the scan rate. This relationship is described by the Randles–Sevcik equation. In this situation, the CV experiment only samples a small portion of the solution, i.e., the diffusion layer at the electrode surface.
The utility of cyclic voltammetry is highly dependent on the analyte being studied. The analyte has to be redox active within the potential window to be scanned.
Often the analyte displays a reversible CV wave (such as that depicted in Figure 1), which is observed when all of the initial analyte can be recovered after a forward and reverse scan cycle. Although such reversible couples are simpler to analyze, they contain less information than more complex waveforms.
The waveform of even reversible couples is complex owing to the combined effects of polarization and diffusion. The difference between the two peak potentials (Ep), ΔEp, is of particular interest.
This difference mainly results from the effects of analyte diffusion rates. In the ideal case of a reversible 1e- couple, ΔEp is 57 mV and the full-width half-max of the forward scan peak is 59 mV. Typical values observed experimentally are greater, often approaching 70 or 80 mV. The waveform is also affected by the rate of electron transfer, usually discussed as the activation barrier for electron transfer. A theoretical description of polarization overpotential is in part described by the Butler–Volmer equation and Cottrell equation. In an ideal system the relationship reduces to for an n electron process. [2]
Focusing on current, reversible couples are characterized by ipa/ipc = 1.
When a reversible peak is observed, thermodynamic information in the form of a half cell potential E01/2 can be determined. When waves are semi-reversible (ipa/ipc is close but not equal to 1), it may be possible to determine even more specific information (see electrochemical reaction mechanism).
The current maxima for oxidation and reduction itself depend on the scan rate, see the figure.
To study the nature of the electrochemical reaction mechanism it is useful to perform a power fit according to
A fit with in the figure shows the proportionality of the peak currents to the square root of the scan rate when additionally is fulfilled.
This leads to the so called Randles–Sevcik equation and the rate determining step of this electrochemical redox reaction can be assigned to diffusion.
Many redox processes observed by CV are quasi-reversible or non-reversible. In such cases the thermodynamic potential E01/2 is often deduced by simulation. The irreversibility is indicated by ipa/ipc ≠ 1. Deviations from unity are attributable to a subsequent chemical reaction that is triggered by the electron transfer. Such EC processes can be complex, involving isomerization, dissociation, association, etc. [5] [6]
Adsorbed species give simple voltammetric responses: ideally, at slow scan rates, there is no peak separation, the peak width is 90mV for a one-electron redox couple, and the peak current and peak area are proportional to scan rate (observing that the peak current is proportional to scan rate proves that the redox species that gives the peak is actually immobilised). [1] The effect of increasing the scan rate can be used to measure the rate of interfacial electron transfer and/or the rates of reactions that are coupltransfer. This technique has been useful to study redox proteins, some of which readily adsorb on various electrode materials, but the theory for biological and non-biological redox molecules is the same (see the page about protein film voltammetry).
CV experiments are conducted on a solution in a cell fitted with electrodes. The solution consists of the solvent, in which is dissolved electrolyte and the species to be studied. [7]
A standard CV experiment employs a cell fitted with three electrodes: reference electrode, working electrode, and counter electrode. This combination is sometimes referred to as a three-electrode setup. Electrolyte is usually added to the sample solution to ensure sufficient conductivity. The solvent, electrolyte, and material composition of the working electrode will determine the potential range that can be accessed during the experiment.
The electrodes are immobile and sit in unstirred solutions during cyclic voltammetry. This "still" solution method gives rise to cyclic voltammetry's characteristic diffusion-controlled peaks. This method also allows a portion of the analyte to remain after reduction or oxidation so that it may display further redox activity. Stirring the solution between cyclic voltammetry traces is important in order to supply the electrode surface with fresh analyte for each new experiment. The solubility of an analyte can change drastically with its overall charge; as such it is common for reduced or oxidized analyte species to precipitate out onto the electrode. This layering of analyte can insulate the electrode surface, display its own redox activity in subsequent scans, or otherwise alter the electrode surface in a way that affects the CV measurements. For this reason it is often necessary to clean the electrodes between scans.
Common materials for the working electrode include glassy carbon, platinum, and gold. These electrodes are generally encased in a rod of inert insulator with a disk exposed at one end. A regular working electrode has a radius within an order of magnitude of 1 mm. Having a controlled surface area with a well-defined shape is necessary for being able to interpret cyclic voltammetry results.
To run cyclic voltammetry experiments at very high scan rates a regular working electrode is insufficient. High scan rates create peaks with large currents and increased resistances, which result in distortions. Ultramicroelectrodes can be used to minimize the current and resistance.
The counter electrode, also known as the auxiliary or second electrode, can be any material that conducts current easily, will not react with the bulk solution, and has a surface area much larger than the working electrode. Common choices are platinum and graphite. Reactions occurring at the counter electrode surface are unimportant as long as it continues to conduct current well. To maintain the observed current the counter electrode will often oxidize or reduce the solvent or bulk electrolyte.
CV can be conducted using a variety of solutions. Solvent choice for cyclic voltammetry takes into account several requirements. [4] The solvent must dissolve the analyte and high concentrations of the supporting electrolyte. It must also be stable in the potential window of the experiment with respect to the working electrode. It must not react with either the analyte or the supporting electrolyte. It must be pure to prevent interference.
The electrolyte ensures good electrical conductivity and minimizes iR drop such that the recorded potentials correspond to actual potentials. For aqueous solutions, many electrolytes are available, but typical ones are alkali metal salts of perchlorate and nitrate. In nonaqueous solvents, the range of electrolytes is more limited, and a popular choice is tetrabutylammonium hexafluorophosphate. [8]
Potentiodynamic techniques also exist that add low-amplitude AC perturbations to a potential ramp and measure variable response in a single frequency (AC voltammetry) or in many frequencies simultaneously (potentiodynamic electrochemical impedance spectroscopy). [9] The response in alternating current is two-dimensional, characterized by both amplitude and phase. These data can be analyzed to determine information about different chemical processes (charge transfer, diffusion, double layer charging, etc.). Frequency response analysis enables simultaneous monitoring of the various processes that contribute to the potentiodynamic AC response of an electrochemical system.
Whereas cyclic voltammetry is not hydrodynamic voltammetry, useful electrochemical methods are. In such cases, flow is achieved at the electrode surface by stirring the solution, pumping the solution, or rotating the electrode as is the case with rotating disk electrodes and rotating ring-disk electrodes. Such techniques target steady state conditions and produce waveforms that appear the same when scanned in either the positive or negative directions, thus limiting them to linear sweep voltammetry.
This section may be too technical for most readers to understand.(May 2022) |
Cyclic voltammetry (CV) has become an important and widely used electroanalytical technique in many areas of chemistry. It is often used to study a variety of redox processes, to determine the stability of reaction products, the presence of intermediates in redox reactions, [10] electron transfer kinetics, [11] and the reversibility of a reaction. [12] It can be used for electrochemical deposition of thin films or for determining suitable reduction potential range of the ions present in electrolyte for electrochemical deposition. [13] CV can also be used to determine the electron stoichiometry of a system, the diffusion coefficient of an analyte, and the formal reduction potential of an analyte, which can be used as an identification tool. In addition, because concentration is proportional to current in a reversible, Nernstian system, the concentration of an unknown solution can be determined by generating a calibration curve of current vs. concentration. [14]
In cellular biology it is used to measure the concentrations[ clarification needed ] in living organisms. [15] In organometallic chemistry, it is used to evaluate redox mechanisms. [16]
Cyclical voltammetry can be used to determine the antioxidant capacity in food and even skin. [17] [18] Low molecular weight antioxidants, molecules that prevent other molecules from being oxidized by acting as reducing agents, are important in living cells because they inhibit cell damage or death caused by oxidation reactions that produce radicals. [19] Examples of antioxidants include flavonoids, whose antioxidant activity is greatly increased with more hydroxyl groups. [20] Because traditional methods to determine antioxidant capacity involve tedious steps, techniques to increase the rate of the experiment are continually being researched. One such technique involves cyclic voltammetry because it can measure the antioxidant capacity by quickly measuring the redox behavior over a complex system without the need to measure each component's antioxidant capacity. [21] [22] Furthermore, antioxidants are quickly oxidized at inert electrodes, so the half-wave potential can be utilized to determine antioxidant capacity. [23] It is important to note that whenever cyclic voltammetry is utilized, it is usually compared to spectrophotometry or high-performance liquid chromatography (HPLC). [24] Applications of the technique extend to food chemistry, where it is used to determine the antioxidant activity of red wine, chocolate, and hops. Additionally, it even has uses in the world of medicine in that it can determine antioxidants in the skin.
The technique being evaluated uses voltammetric sensors combined in an electronic tongue (ET) to observe the antioxidant capacity in red wines. These electronic tongues (ETs) consist of multiple sensing units like voltammetric sensors, which will have unique responses to certain compounds. This approach is optimal to use since samples of high complexity can be analyzed with high cross-selectivity. Thus, the sensors can be sensitive to pH and antioxidants. As usual, the voltage in the cell was monitored using a working electrode and a reference electrode (silver/silver chloride electrode). [25] Furthermore, a platinum counter electrode allows the current to continue to flow during the experiment. The Carbon Paste Electrodes sensor (CPE) and the Graphite-Epoxy Composite (GEC) electrode are tested in a saline solution before the scanning of the wine so that a reference signal can be obtained. The wines are then ready to be scanned, once with CPE and once with GEC. While cyclic voltammetry was successfully used to generate currents using the wine samples, the signals were complex and needed an additional extraction stage. [25] It was found that the ET method could successfully analyze wine's antioxidant capacity as it agreed with traditional methods like TEAC, Folin-Ciocalteu, and I280 indexes. [25] Additionally, the time was reduced, the sample did not have to be pretreated, and other reagents were unnecessary, all of which diminished the popularity of traditional methods. [26] Thus, cyclic voltammetry successfully determines the antioxidant capacity and even improves previous results.
The phenolic antioxidants for cocoa powder, dark chocolate, and milk chocolate can also be determined via cyclic voltammetry. In order to achieve this, the anodic peaks are calculated and analyzed with the knowledge that the first and third anodic peaks can be assigned to the first and second oxidation of flavonoids, while the second anodic peak represents phenolic acids. [22] Using the graph produced by cyclic voltammetry, the total phenolic and flavonoid content can be deduced in each of the three samples. It was observed that cocoa powder and dark chocolate had the highest antioxidant capacity since they had high total phenolic and flavonoid content. [22] Milk chocolate had the lowest capacity as it had the lowest phenolic and flavonoid content. [22] While the antioxidant content was given using the cyclic voltammetry anodic peaks, HPLC must then be used to determine the purity of catechins and procyanidin in cocoa powder, dark chocolate, and milk chocolate.
Hops, the flowers used in making beer, contain antioxidant properties due to the presence of flavonoids and other polyphenolic compounds. [23] In this cyclic voltammetry experiment, the working electrode voltage was determined using a ferricinium/ferrocene reference electrode. By comparing different hop extract samples, it was observed that the sample containing polyphenols that were oxidized at less positive potentials proved to have better antioxidant capacity. [23]
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.
Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. The analytical data for a voltammetric experiment comes in the form of a voltammogram, which plots the current produced by the analyte versus the potential of the working electrode.
In electrochemistry, chronoamperometry is an analytical technique in which the electric potential of the working electrode is stepped and the resulting current from faradaic processes occurring at the electrode is monitored as a function of time. The functional relationship between current response and time is measured after applying single or double potential step to the working electrode of the electrochemical system. Limited information about the identity of the electrolyzed species can be obtained from the ratio of the peak oxidation current versus the peak reduction current. However, as with all pulsed techniques, chronoamperometry generates high charging currents, which decay exponentially with time as any RC circuit. The Faradaic current - which is due to electron transfer events and is most often the current component of interest - decays as described in the Cottrell equation. In most electrochemical cells, this decay is much slower than the charging decay-cells with no supporting electrolyte are notable exceptions. Most commonly a three-electrode system is used. Since the current is integrated over relatively longer time intervals, chronoamperometry gives a better signal-to-noise ratio in comparison to other amperometric techniques.
Polarography is a type of voltammetry where the working electrode is a dropping mercury electrode (DME) or a static mercury drop electrode (SMDE), which are useful for their wide cathodic ranges and renewable surfaces. It was invented in 1922 by Czechoslovak chemist Jaroslav Heyrovský, for which he won the Nobel prize in 1959. The main advantages of mercury as electrode material are as follows: 1) a large voltage window: ca. from +0.2 V to -1.8 V vs reversible hydrogen electrode (RHE). Hg electrode is particularly well-suited for studying electroreduction reactions. 2) very reproducible electrode surface, since mercury is liquid. 3) very easy cleaning of the electrode surface by making a new drop of mercury from a large Hg pool connected by a glass capillary.
In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies that the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density is achieved.
Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The four main categories are potentiometry, amperometry, coulometry, and voltammetry.
In analytical chemistry, linear sweep voltammetry is a method of voltammetry where the current at a working electrode is measured while the potential between the working electrode and a reference electrode is swept linearly in time. Oxidation or reduction of species is registered as a peak or trough in the current signal at the potential at which the species begins to be oxidized or reduced.
Squarewave voltammetry (SWV) is a form of linear potential sweep voltammetry that uses a combined square wave and staircase potential applied to a stationary electrode. It has found numerous applications in various fields, including within medicinal and various sensing communities.
In electrochemistry, the auxiliary electrode, often also called the counter electrode, is an electrode used in a three-electrode electrochemical cell for voltammetric analysis or other reactions in which an electric current is expected to flow. The auxiliary electrode is distinct from the reference electrode, which establishes the electrical potential against which other potentials may be measured, and the working electrode, at which the cell reaction takes place.
In electrochemistry, an electrochemical reaction mechanism is the step-by-step sequence of elementary steps, involving at least one outer-sphere electron transfer, by which an overall electrochemical reaction occurs.
In analytical chemistry, a rotating disk electrode (RDE) is a working electrode used in three-electrode systems for hydrodynamic voltammetry. The electrode rotates during experiments, inducing a flux of analyte to the electrode. These working electrodes are used in electrochemical studies when investigating reaction mechanisms related to redox chemistry, among other chemical phenomena. The more complex rotating ring-disk electrode can be used as a rotating disk electrode if the ring is left inactive during the experiment.
In analytical chemistry, a rotating ring-disk electrode (RRDE) is a double working electrode used in hydrodynamic voltammetry, very similar to a rotating disk electrode (RDE). The electrode rotates during experiments inducing a flux of analyte to the electrode. This system used in electrochemical studies when investigating reaction mechanisms related to redox chemistry and other chemical phenomena.
An ultramicroelectrode (UME) is a working electrode used in a voltammetry. The small size of UME give them large diffusion layers and small overall currents. These features allow UME to achieve useful steady-state conditions and very high scan rates (V/s) with limited distortion. UME were developed independently by Wightman and Fleischmann around 1980. Small current at UME enables electrochemical measurements in low conductive media, where voltage drop associated with high solution resistance makes these experiments difficult for conventional electrodes. Furthermore, small voltage drop at UME leads to a very small voltage distortion at the electrode-solution interface which allows using two-electrode setup in voltammetric experiment instead of conventional three-electrode setup.
In analytical chemistry, hydrodynamic voltammetry is a form of voltammetry in which the analyte solution flows relative to a working electrode. In many voltammetry techniques, the solution is intentionally left still to allow diffusion-controlled mass transfer. When a solution is made to flow, through stirring or some other physical mechanism, it is very important to the technique to achieve a very controlled flux or mass transfer in order to obtain predictable results. These methods are types of electrochemical studies which use potentiostats to investigate reaction mechanisms related to redox chemistry among other chemical phenomenon.
Bulk electrolysis is also known as potentiostatic coulometry or controlled potential coulometry. The experiment is a form of coulometry which generally employs a three electrode system controlled by a potentiostat. In the experiment the working electrode is held at a constant potential (volts) and current (amps) is monitored over time (seconds). In a properly run experiment an analyte is quantitatively converted from its original oxidation state to a new oxidation state, either reduced or oxidized. As the substrate is consumed, the current also decreases, approaching zero when the conversion nears completion.
In electrochemistry, the Randles–Ševčík equation describes the effect of scan rate on the peak current ip for a cyclic voltammetry experiment. For simple redox events such as the ferrocene/ferrocenium couple, ip depends not only on the concentration and diffusional properties of the electroactive species but also on scan rate.
Scanning electrochemical microscopy (SECM) is a technique within the broader class of scanning probe microscopy (SPM) that is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Initial characterization of the technique was credited to University of Texas electrochemist, Allen J. Bard, in 1989. Since then, the theoretical underpinnings have matured to allow widespread use of the technique in chemistry, biology and materials science. Spatially resolved electrochemical signals can be acquired by measuring the current at an ultramicroelectrode (UME) tip as a function of precise tip position over a substrate region of interest. Interpretation of the SECM signal is based on the concept of diffusion-limited current. Two-dimensional raster scan information can be compiled to generate images of surface reactivity and chemical kinetics.
Pseudocapacitance is the electrochemical storage of electricity in an electrochemical capacitor known as a pseudocapacitor. This faradaic charge transfer originates by a very fast sequence of reversible faradaic redox, electrosorption or intercalation processes on the surface of suitable electrodes. Pseudocapacitance is accompanied by an electron charge-transfer between electrolyte and electrode coming from a de-solvated and adsorbed ion. One electron per charge unit is involved. The adsorbed ion has no chemical reaction with the atoms of the electrode since only a charge-transfer takes place.
In electrochemistry, protein film voltammetry is a technique for examining the behavior of proteins immobilized on an electrode. The technique is applicable to proteins and enzymes that engage in electron transfer reactions and it is part of the methods available to study enzyme kinetics.
Electrochemical stripping analysis is a set of analytical chemistry methods based on voltammetry or potentiometry that are used for quantitative determination of ions in solution. Stripping voltammetry have been employed for analysis of organic molecules as well as metal ions. Carbon paste, glassy carbon paste, and glassy carbon electrodes when modified are termed as chemically modified electrodes and have been employed for the analysis of organic and inorganic compounds.