DTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose N,N-dimethyltransferase

Last updated
DTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose N,N-dimethyltransferase
Identifiers
EC no. 2.1.1.236
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

DTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose N,N-dimethyltransferase (EC 2.1.1.236, RavNMT) is an enzyme with systematic name S-adenosyl-L-methionine:dTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose 3-N,N-dimethyltransferase. [1] This enzyme catalyses the following chemical reaction

2 S-adenosyl-L-methionine + dTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose 2 S-adenosyl-L-homocysteine + dTDP-3-dimethylamino-3,6-dideoxy-alpha-D-galactopyranose

The enzyme is involved in the synthesis of dTDP-D-ravidosamine.

Related Research Articles

<span class="mw-page-title-main">Adenosylmethionine decarboxylase</span> Class of enzymes

The enzyme adenosylmethionine decarboxylase catalyzes the conversion of S-adenosyl methionine to S-adenosylmethioninamine. Polyamines such as spermidine and spermine are essential for cellular growth under most conditions, being implicated in many cellular processes including DNA, RNA and protein synthesis. S-adenosylmethionine decarboxylase (AdoMetDC) plays an essential regulatory role in the polyamine biosynthetic pathway by generating the n-propylamine residue required for the synthesis of spermidine and spermine from putrescein. Unlike many amino acid decarboxylases AdoMetDC uses a covalently bound pyruvate residue as a cofactor rather than the more common pyridoxal 5'-phosphate. These proteins can be divided into two main groups which show little sequence similarity either to each other, or to other pyruvoyl-dependent amino acid decarboxylases: class I enzymes found in bacteria and archaea, and class II enzymes found in eukaryotes. In both groups the active enzyme is generated by the post-translational autocatalytic cleavage of a precursor protein. This cleavage generates the pyruvate precursor from an internal serine residue and results in the formation of two non-identical subunits termed alpha and beta which form the active enzyme.

In enzymology, an adenosylmethionine-8-amino-7-oxononanoate transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, a dTDP-4-amino-4,6-dideoxy-D-glucose transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, a dTDP-4-amino-4,6-dideoxygalactose transaminase is an enzyme that catalyzes the chemical reaction

<i>S</i>-Adenosylmethionine synthetase enzyme

S-Adenosylmethionine synthetase, also known as methionine adenosyltransferase (MAT), is an enzyme that creates S-adenosylmethionine by reacting methionine and ATP.

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

2-deoxy-scyllo-inosamine dehydrogenase (SAM-dependent) is an enzyme with systematic name 2-deoxy-scyllo-inosamine:S-adenosyl-L-methionine 1-oxidoreductase. This enzyme catalyses the following chemical reaction

18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase (EC 2.1.1.183, 18S rRNA dimethylase Dim1p, Dim1p, ScDim1, m2(6)A dimethylase, KIDIM1) is an enzyme with systematic name S-adenosyl-L-methionine:18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine10-N2)-dimethyltransferase (EC 2.1.1.213, PAB1283, N(2),N(2)-dimethylguanosine tRNA methyltransferase, Trm-G10, PabTrm-G10, PabTrm-m2 2G10 enzyme) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine10-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,4,6-trideoxy-alpha-D-glucopyranose N,N-dimethyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:dTDP-3-amino-3,4,6-trideoxy-alpha-D-glucopyranose 3-N,N-dimethyltransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N-dimethyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose 3-N,N-dimethyltransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose 3-N-acetyltransferase is an enzyme with systematic name acetyl-CoA:dTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose 3-N-acetyltransferase. This enzyme catalyses the following chemical reaction

FDTC may refer to:

DTDP-4-amino-4,6-dideoxy-D-glucose acyltransferase is an enzyme with systematic name acetyl-CoA:dTDP-4-amino-4,6-dideoxy-alpha-D-glucose N-acetyltransferase. This enzyme catalyses the following chemical reaction

DTDP-4-amino-4,6-dideoxy-D-galactose acyltransferase is an enzyme with systematic name acetyl-CoA:dTDP-4-amino-4,6-dideoxy-alpha-D-galactose N-acetyltransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose transaminase is an enzyme with systematic name dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose transaminase is an enzyme with systematic name dTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine transaminase is an enzyme with systematic name UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

TDP-4-oxo-6-deoxy-alpha-D-glucose-3,4-oxoisomerase (dTDP-3-dehydro-6-deoxy-alpha-D-galactopyranose-forming) is an enzyme with systematic name dTDP-4-dehydro-6-deoxy-alpha-D-glucopyranose:dTDP-3-dehydro-6-deoxy-alpha-D-galactopyranose isomerase. This enzyme catalyses the following chemical reaction

References

  1. Kharel MK, Lian H, Rohr J (March 2011). "Characterization of the TDP-D-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-D-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate". Organic & Biomolecular Chemistry. 9 (6): 1799–808. doi:10.1039/c0ob00854k. PMC   4482361 . PMID   21264378.