Demethylmenaquinone methyltransferase

Last updated
Demethylmenaquinone methyltransferase
Identifiers
EC no. 2.1.1.163
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Demethylmenaquinone methyltransferase (EC 2.1.1.163, S-adenosyl-L-methionine-DMK methyltransferase, demethylmenaquinone C-methylase, 2-heptaprenyl-1,4-naphthoquinone methyltransferase, 2-demethylmenaquinone methyltransferase, S-adenosyl-L-methionine:2-demethylmenaquinone methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:demethylmenaquinone methyltransferase. [1] [2] [3] [4] This enzyme catalyses the following chemical reaction

demethylmenaquinol + S-adenosyl-L-methionine menaquinol + S-adenosyl-L-homocysteine

The enzyme catalyses the last step in menaquinone biosynthesis.

Related Research Articles

<span class="mw-page-title-main">DNA adenine methylase</span> Prokaryotic enzyme

DNA adenine methylase, (Dam methylase) (also site-specific DNA-methyltransferase (adenine-specific), EC 2.1.1.72, modification methylase, restriction-modification system) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA. Immediately after DNA synthesis, the daughter strand remains unmethylated for a short time. It is an orphan methyltransferase that is not part of a restriction-modification system and regulates gene expression. This enzyme catalyses the following chemical reaction

In enzymology, a homocysteine S-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Protein-glutamate O-methyltransferase</span>

In enzymology, a protein-glutamate O-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

<span class="mw-page-title-main">Uroporphyrinogen-III C-methyltransferase</span> Class of enzymes

Uroporphyrinogen-III C-methyltransferase, uroporphyrinogen methyltransferase, uroporphyrinogen-III methyltransferase, adenosylmethionine-uroporphyrinogen III methyltransferase, S-adenosyl-L-methionine-dependent uroporphyrinogen III methylase, uroporphyrinogen-III methylase, SirA, CysG, CobA, uroporphyrin-III C-methyltransferase, S-adenosyl-L-methionine:uroporphyrin-III C-methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:uroporphyrinogen-III C-methyltransferase. This enzyme catalyses the following chemical reaction

Methyl halide transferase is an enzyme with systematic name S-adenosylmethionine:iodide methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine2445-N2)-methyltransferase (EC 2.1.1.173, ycbY (gene), rlmL (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2445-N2)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (cytosine967-C5)-methyltransferase (EC 2.1.1.176, rsmB (gene), fmu (gene), 16S rRNA m5C967 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (cytosine967-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (adenine1408-N1)-methyltransferase (EC 2.1.1.180, kanamycin-apramycin resistance methylase, 16S rRNA:m1A1408 methyltransferase, KamB, NpmA, 16S rRNA m1A1408 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (adenine1408-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase (EC 2.1.1.182, S-adenosylmethionine-6-N',N'-adenosyl (rRNA) dimethyltransferase, KsgA, ksgA methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanosine2251-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanosine2251-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine745-N1)-methyltransferase (EC 2.1.1.187, Rlma(I), Rlma1, 23S rRNA m1G745 methyltransferase, YebH, RlmAI methyltransferase, ribosomal RNA(m1G)-methylase, rRNA(m1G)methylase, RrmA, 23S rRNA:m1G745 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine745-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

Cobalt-precorrin-5B (C1)-methyltransferase (EC 2.1.1.195), cobalt-precorrin-6A synthase, CbiD (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:cobalt-precorrin-5B (C1)-methyltransferase. This enzyme catalyses the following chemical reaction

Malonyl-CoA O-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:malonyl-CoA O-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (cytidine32/uridine32-2'-O)-methyltransferase (EC 2.1.1.200, YfhQ, tRNA:Cm32/Um32 methyltransferase, TrMet(Xm32), TrmJ) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytidine32/uridine32-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

tRNA (cytidine34-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytidine34/5-carboxymethylaminomethyluridine34-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

Demethylspheroidene O-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:demethylspheroidene O-methyltransferase. This enzyme catalyses the following chemical reaction

2-polyprenyl-6-hydroxyphenol methylase is an enzyme with systematic name S-adenosyl-L-methionine:3-(all-trans-polyprenyl)benzene-1,2-diol 2-O-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenosine1067-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenosine1067-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Coenzyme Q5, methyltransferase</span> Protein-coding gene in the species Homo sapiens

Coenzyme Q5, methyltransferase, more commonly known as COQ5, is an enzyme involved in the electron transport chain. COQ5 is located within the mitochondrial matrix and is a part of the biosynthesis of ubiquinone.

References

  1. Koike-Takeshita A, Koyama T, Ogura K (May 1997). "Identification of a novel gene cluster participating in menaquinone (vitamin K2) biosynthesis. Cloning and sequence determination of the 2-heptaprenyl-1,4-naphthoquinone methyltransferase gene of Bacillus stearothermophilus". The Journal of Biological Chemistry. 272 (19): 12380–3. doi: 10.1074/jbc.272.19.12380 . PMID   9139683.
  2. Wissenbach U, Ternes D, Unden G (1992). "An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration". Archives of Microbiology. 158 (1): 68–73. doi:10.1007/BF00249068. PMID   1444716. S2CID   5861160.
  3. Catala F, Azerad R, Lederer E (1970). "[Properties of demethylmenaquinone C-methylase from Mycobacterium phlei]". Internationale Zeitschrift für Vitaminforschung. International Journal of Vitamin Research. Journal International de Vitaminologie. 40 (3): 363–73. PMID   5450997.
  4. Lee PT, Hsu AY, Ha HT, Clarke CF (March 1997). "A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene". Journal of Bacteriology. 179 (5): 1748–54. doi:10.1128/jb.179.5.1748-1754.1997. PMC   178890 . PMID   9045837.