Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase

Last updated
dihydrolipoyllysine-residue (2-methylpropanoyl)transferase
2ii5.jpg
Identifiers
EC no. 2.3.1.168
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a dihydrolipoyllysine-residue (2-methylpropanoyl)transferase (EC 2.3.1.168) is an enzyme that catalyzes the chemical reaction

2-methylpropanoyl-CoA + enzyme N6-(dihydrolipoyl)lysine CoA + enzyme N6-(S-[2-methylpropanoyl]dihydrolipoyl)lysine

Thus, the two substrates of this enzyme are 2-methylpropanoyl-CoA and enzyme N6-(dihydrolipoyl)lysine, whereas its two products are CoA and [[enzyme N6-(S-[2-methylpropanoyl]dihydrolipoyl)lysine]].

This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is 2-methylpropanoyl-CoA:enzyme-N6-(dihydrolipoyl)lysine S-(2-methylpropanoyl)transferase. Other names in common use include dihydrolipoyl transacylase, enzyme-dihydrolipoyllysine:2-methylpropanoyl-CoA, S-(2-methylpropanoyl)transferase, 2-methylpropanoyl-CoA:enzyme-6-N-(dihydrolipoyl)lysine, and S-(2-methylpropanoyl)transferase. This enzyme participates in valine, leucine and isoleucine degradation.

Structural studies

As of late 2007, 6 structures have been solved for this class of enzymes, with PDB accession codes 1ZWV, 2COO, 2IHW, 2II3, 2II4, and 2II5.

Related Research Articles

<span class="mw-page-title-main">Pyruvate dehydrogenase complex</span> Three-enzyme complex responsible for pyruvate decarboxylation

Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate.

The branched-chain α-ketoacid dehydrogenase complex is a multi-subunit complex of enzymes that is found on the mitochondrial inner membrane. This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family comprising pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, key enzymes that function in the Krebs cycle.

<span class="mw-page-title-main">Dihydrolipoyl transacetylase</span>

Dihydrolipoyl transacetylase is an enzyme component of the multienzyme pyruvate dehydrogenase complex. The pyruvate dehydrogenase complex is responsible for the pyruvate decarboxylation step that links glycolysis to the citric acid cycle. This involves the transformation of pyruvate from glycolysis into acetyl-CoA which is then used in the citric acid cycle to carry out cellular respiration.

Oxidative decarboxylation is a decarboxylation reaction caused by oxidation. Most are accompanied by α- Ketoglutarate α- Decarboxylation caused by dehydrogenation of hydroxyl carboxylic acids such as carbonyl carboxylic acid, malic acid, isocitric acid, etc.

<span class="mw-page-title-main">Pyruvate dehydrogenase</span> Class of enzymes

Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate.

Malate dehydrogenase (NADP<sup>+</sup>)

In enzymology, a malate dehydrogenase (NADP+) (EC 1.1.1.82) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-methyl-2-oxobutanoate dehydrogenase</span> Class of enzymes

In enzymology, a 3-methyl-2-oxobutanoate dehydrogenase (EC 1.2.4.4) is an enzyme that catalyzes the chemical reaction

In enzymology, a 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin) (EC 1.2.7.7) is an enzyme that catalyzes the chemical reaction

In enzymology, a saccharopine dehydrogenase (NAD+, L-glutamate-forming) (EC 1.5.1.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a saccharopine dehydrogenase (NADP+, L-lysine-forming) (EC 1.5.1.8) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dihydrolipoyllysine-residue succinyltransferase</span>

In enzymology, a dihydrolipoyllysine-residue succinyltransferase (EC 2.3.1.61) is an enzyme that catalyzes the chemical reaction

In enzymology, a lipoyl(octanoyl) transferase (EC 2.3.1.181) is an enzyme that catalyzes the chemical reaction

In enzymology, a [3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring)] is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">BCKDHA</span> Protein-coding gene in the species Homo sapiens

A 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial is an enzyme that in humans is encoded by the BCKDHA gene.

<span class="mw-page-title-main">DBT (gene)</span> Mammalian protein found in Homo sapiens

Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial is an enzyme that in humans is encoded by the DBT gene.

<span class="mw-page-title-main">DLST</span> Protein-coding gene in the species Homo sapiens

Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial is an enzyme that in humans is encoded by the DLST gene.

<span class="mw-page-title-main">BCKDHB</span> Protein-coding gene in the species Homo sapiens

2-Oxoisovalerate dehydrogenase subunit beta, mitochondrial is an enzyme that in humans is encoded by the BCKDHB gene.

<span class="mw-page-title-main">BCKDK</span> Protein-coding gene in the species Homo sapiens

Branched chain ketoacid dehydrogenase kinase (BCKDK) is an enzyme encoded by the BCKDK gene on chromosome 16. This enzyme is part of the mitochondrial protein kinases family and it is a regulator of the valine, leucine, and isoleucine catabolic pathways. BCKDK is found in the mitochondrial matrix and the prevalence of it depends on the type of cell. Liver cells tend to have the lowest concentration of BCKDK, whereas skeletal muscle cells have the highest amount. Abnormal activity of this enzyme often leads to diseases such as maple syrup urine disease and cachexia.

Lipoate–protein ligase (EC 2.7.7.63, LplA, lipoate protein ligase, lipoate–protein ligase A, LPL, LPL-B) is an enzyme with systematic name ATP:lipoate adenylyltransferase. This enzyme catalyses the following chemical reaction

(3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring))-phosphatase (EC 3.1.3.52, branched-chain oxo-acid dehydrogenase phosphatase, branched-chain 2-keto acid dehydrogenase phosphatase, branched-chain α-keto acid dehydrogenase phosphatase, BCKDH', [3-methyl-2-oxobutanoate dehydrogenase (lipoamide)]-phosphatase, [3-methyl-2-oxobutanoate dehydrogenase (lipoamide)]-phosphate phosphohydrolase) is an enzyme with systematic name (3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring))-phosphate phosphohydrolase. This enzyme catalyses the following chemical reaction

References