Ditylenchus destructor

Last updated

Ditylenchus destructor
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Order: Tylenchida
Family: Anguinidae
Genus: Ditylenchus
Species:
D. destructor
Binomial name
Ditylenchus destructor
Thorne, 1945

Ditylenchus destructor is a plant pathogenic nematode commonly known as the potato rot nematode. Other common names include the iris nematode, the potato tuber eelworm and the potato tuber nematode. It is an endoparasitic, migratory nematode commonly found in areas such as the United States, Europe, central Asia and Southern Africa.

Contents

Disease cycle

Potato rot nematodes are microscopic worms approximately 1.4 millimeters long. Their life cycle takes place inside potato tubers where they eat starch grains. This causes the affected tissues to become brown and powdery, and the surface of the tuber becomes covered with dark patches with dry cracking skin. The nematodes live inside the living tissue where they aggregate rapidly as the fecund females each produce up to 250 eggs. They survive in stored tubers during the winter and can infect the stolons of planting material. After infection, the nematodes move throughout the plant tissue producing a pectinase enzyme, which causes cell degeneration and is the main causal agent of the rot observed. [1] The soil plays only a secondary role in the transfer of this nematode. [2]

The life cycle of Ditylenchus destructor lasts approximately 6 days. [3] As Ditylenchus destructor is an endoparasite, a majority of the life cycle occurs inside the host tissue. There are four molting periods and juvenile stages of development for Ditylenchus destructor with the first juvenile stage occurring within the egg. [4] Females deposit eggs inside the tuber from their ovaries at which point the embryos begin undergo a cleavage process, beginning the first juvenile stage. Two and a half hours later the juvenile nematode can be seen through the egg wall, and 48 hours later the first larval stage has completed and hatching occurs. Hatching marks the molting into the second juvenile stage, and development continues until the next molting. In the third juvenile stage the sexual structures begin to develop and become visible. This development of additional structures causes large amounts of growth and elongation is seen in the nematode (especially in females who have more development occur). It is in the fourth stage where the sexual structures fully develop: vaginal development in females and testes development in males. [5] At this point the nematodes undergo their final molting and enter the final, adult stage in their life cycle. After feeding on a host for some time, the females lay eggs inside the tuber, the eggs are fertilized by a male, and the cycle repeats. [5]

As a migratory endoparasite, Ditylenchus destructor females lay eggs throughout the plant tissue while moving from cell to cell. Once they have hatched, the juvenile nematodes will either move throughout the surrounding plant tissue or out of the plant from which they hatched to a nearby, healthy host. [4] Ditylenchus destructor is not very mobile through soil though, so dispersal primarily occurs during harvest or transportation of the host when healthy tubers are in the immediate vicinity. [4] If the nematodes exit the initial host, they most commonly infect the tubers of a new host; however, it is sometimes possible for them to infect the above ground parts of the plant and migrate to the tubers through the plant cells. [4]

Environment

Unlike other nematodes, Ditylenchus destructor does not have a resting form, so environmental conditions have a large impact on the habits of the organism. The most optimal conditions for the nematodes are soils that are around 28 °C. Temperatures above or below this range will inhibit the movement and life cycle of the nematode; therefore, the 28 °C range provides optimal growth conditions. [6] Moist soils are also especially favorable for the development of the nematode as well as its movement through the soil. [7] Given these conditions, the most opportune locations for Ditylenchus destructor are in midwestern and southern North America as well as central parts of Europe and Asia. [8] In these areas, agricultural practices also largely influence the spread of the pathogen. When harvesting and transporting tubers, moving them in large piles allows the nematodes to move from an infected tuber to surrounding healthy ones, encouraging the spread of disease. [7]

Hosts and symptoms

In addition to potatoes, potato rot nematodes have a wide range of over 100 species of hosts from numerous families. [9] Some of these include alfalfa, beets, carrots, garlic, hops, mint, parsnips, peanuts, rhubarb, tomatoes, and flowering plants such as irises and tulips. [8] The nematodes only attack the below ground, non-aerial tissues of plants such as the roots, bulbs, rhizomes, and tubers. [8]

The main symptoms of Ditylenchus destructor, common to potatoes and its other hosts, are the rotting and discoloration of subterranean plant tissue. In potatoes, early infection can be detected by small white spots underneath the potato's skin. As the disease progresses, these spots become larger and darker with a spongy or hollow appearance. [7] Tubers develop sunken areas and the skin becomes dry, cracked, and detached from the underlying flesh. There is further discoloration at this stage that is often due to secondary invasions of fungi, bacteria, and free-living nematodes. Above ground symptoms are usually not seen, although heavily infected plants are often weaker, smaller and can have curled or discolored leaves. [10]

Symptoms of Ditylenchus destructor on the bulbs of flowering plants such as irises and tulips are similar to those of potatoes, except infection usually occurs at the bulb's base and moves upwards. The fleshy scales develop discolored yellow to black lesions, the roots become blackened, and leaves can develop yellow tips. Potato rot nematodes in groundnuts, such as peanuts, develop blackened hulls, shrunken kernels, and embryos with a brown discoloration. [7]

Potato rot nematodes are identified and diagnosed by various morphological and molecular methods. The morphological methods are the primary means of diagnosis, with molecular methods being used for when there is a low level of infestation or when only juveniles are present. Nematodes are extracted from infected plant tissue and examined microscopically for distinguishing characteristics such as body and stylet, and tail morphology. Molecular methods for identifying Ditylenchus destructor (especially in distinguishing from other Ditylenchus species) include PCRs (polymerase chain reactions) to find restriction patterns of DNA to identify specific species. [9]

Management

Management of Ditylenchus destructor can be achieved through various methods of preventative and chemical control. Once the nematodes have been established, they are very difficult to eradicate because of the wide range of other hosts on which they can survive. Therefore, preventative measures are generally the first means of control for potato rot nematodes. Planting materials and locations free of these nematodes is crucial, so the soil, seeds, and farm machinery must all be carefully controlled. This is done by disinfecting machinery and removing all potentially infected plant debris from farm equipment when transferring from field to field. Seeds certified to be free of Ditylenchus destructor should be planted. [10] Crop rotation as a form of control is difficult due to the nematodes’ wide host range; therefore, non-host crops must be selected carefully to use for rotation each season. Weeds must also be eradicated, as they often act as alternative hosts for potato rot nematodes. [7]

Chemical control of Ditylenchus destructor can be achieved with soil-applied nematicides such as carbofuran, ethylene dibromide, VAPAM HL, and TELONE. [7] [8] Fumigation with these nematicides is often paired with mechanical measures to attain optimal control. For example, Wisconsin has eradicated these nematodes from potatoes by repeated use of ethylene dibromide and restricting the movement of infected tubers. [7] Another management method was demonstrated by the control of potato rot nematodes in garlic. The seeds were coated with thiram or benomyl wettable powder before being planted, resulting in very good control of the disease. [7]

Importance

Ditylenchus destructor can reproduce at high rates and cause large amounts of damage to hosts and so can be very damaging to a cash crop. One of the most important impacts of Ditylenchus destructor is in South Africa, where it caused major disease amongst the peanut plantations in the early 1990s. In fields where the nematodes have been found, between 40% and 60% of the peanuts had large amounts of symptoms which heavily damaged the production levels. [11] Similarly, the same issues were observed in Sweden in the 1970s when Ditylenchus destructor was found in their potato fields. In this instance it caused disease in between 40% and 70% of the potatoes being grown in the field where the pathogen was found. [4] Finally, one of the more severe cases of the disease was found in Estonia in the 1960s. In this case the nematodes were only found on about 6% of the potato farms but on these farms between 70% and 90% of the potatoes exhibited severe symptoms. This high rate of disease caused immense damage to the fields that were infected and a large amount of crops were lost. [4]

There have also been instances where the nematodes have affected areas within the United States as well. Since 1953, Wisconsin has had to quarantine multiple areas after finding Ditylenchus destructor in local potato fields. [8] The pathogen has also been seen in Idaho where it was a major concern initially, as potatoes are a major state crop. Other states that have had Ditylenchus destructor issues include Arkansas, California, Hawaii, Indiana, New Jersey, North Carolina, Oregon, South Carolina, Virginia, Washington and West Virginia. [4] Fortunately, the United States has used very stringent control laws to avoid any widespread or major damage similar to that seen in the past. [8]

The complete list of countries that have been affected by Ditylenchus destructor include Azerbaijan, Bangladesh, China, India, Iran, Japan, Kazakhstan, Korea, Kyrgyzstan, Malaysia, Pakistan, Saudi Arabia, Tajikistan, Turkey, Uzbekistan, South Africa, Canada, Mexico, United States, Haiti, Ecuador, Peru, Albania, Austria, Belarus, Belgium, Bulgaria, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Moldova, Netherlands, Norway, Poland, Romania, Russia, Slovakia, Span, Sweden, Switzerland, Ukraine, United Kingdom, Australia, and New Zealand. [4]

Related Research Articles

Northern root-knot nematode is a species of vegetable pathogens which produces tiny galls on around 550 crop and weed species. They invade root tissue after birth. Females are able to lay up to 1,000 eggs at a time in a large egg mass. By surviving harsh winters, they can survive in cold climates.

<i>Radopholus similis</i> Species of roundworm

Radopholus similis is a species of nematode known commonly as the burrowing nematode. It is a parasite of plants, and it is a pest of many agricultural crops. It is an especially important pest of bananas, and it can be found on coconut, avocado, coffee, sugarcane, other grasses, and ornamentals. It is a migratory endoparasite of roots, causing lesions that form cankers. Infected plants experience malnutrition.

<i>Meloidogyne incognita</i> Nematode worm, plant disease, many hosts

Meloidogyne incognita, also known as the southern root-nematode or cotton root-knot nematode is a plant-parasitic roundworm in the family Heteroderidae. This nematode is one of the four most common species worldwide and has numerous hosts. It typically incites large, usually irregular galls on roots as a result of parasitism.

<span class="mw-page-title-main">Soybean cyst nematode</span> Species of roundworm

The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pest to soybean crop yields in the U.S., targeting the roots of soybean and other legume plants. When infection is severe SCNs cause stunting, yellowing, impaired canopy development, and yield loss. The symptoms caused by SCNs can go easily unrecognized by farmers—in some cases there are no warning symptoms before a loss of 40% of the yield. Due to the slight stunting and yellowing, many farmers may mistake these symptoms as environmental problems when in fact they are SCNs. Another symptom of SCNs that may affect farmers' yields is stunted roots with fewer nitrogen-fixing nodules. Due to the fact that soybean cyst nematodes can only move a few centimeters in the soil by themselves, they mostly are spread via tillage or plant transplants. This area of infection will look patchy and nonuniform making diagnosis more difficult for farmers. They can be seen in the roots of summer soybean plants if the roots are taken out very carefully and gently washed with water. The egg masses should be seen as bright white or yellow "pearls" on the roots. The later the roots are pulled the harder it will be to diagnose due to the SCNs female dying and turning a much darker color, forming a "cyst". The best way to know if a field is infected by soybean cyst nematodes is to take a soil sample to a nematologist.

<span class="mw-page-title-main">Potato cyst nematode</span> Genus of roundworms that live on potato roots

Potato root nematodes or potato cyst nematodes (PCN) are 1-mm long roundworms belonging to the genus Globodera, which comprises around 12 species. They live on the roots of plants of the family Solanaceae, such as potatoes and tomatoes. PCN cause growth retardation and, at very high population densities, damage to the roots and early senescence of plants. The nematode is not indigenous to Europe but originates from the Andes. Fields are free from PCN until an introduction occurs, after which the typical patches, or hotspots, occur on the farmland. These patches can become full field infestations when unchecked. Yield reductions can average up to 60% at high population densities.

<i>Phytophthora erythroseptica</i> Species of single-celled organism

Phytophthora erythroseptica—also known as pink rot along with several other species of Phytophthora—is a plant pathogen. It infects potatoes causing their tubers to turn pink and damages leaves. It also infects tulips (Tulipa) damaging their leaves and shoots.

<i>Rotylenchulus reniformis</i> Species of roundworm

Rotylenchulus reniformis, the reniform nematode, is a species of parasitic nematode of plants with a worldwide distribution in the tropical and subtropical regions.

<i>Helminthosporium solani</i> Species of fungus

Helminthosporium solani is a fungal plant pathogen responsible for the plant disease known as silver scurf. Silver scurf is a blemish disease, meaning the effect it has on tubers is mostly cosmetic and affects "fresh market, processing and seed tuber potatoes." There are some reports of it affecting development, meaning growth and tuber yield. This is caused by light brown lesions, which in turn change the permeability of tuber skin and then it causes tuber shrinkage and water loss, which finally causes weight loss. The disease has become economically important because silver scurf affected potatoes for processing and direct consumption have been rejected by the industry. The disease cycle can be divided into two stages: field and storage. It is mainly a seed borne disease and the primary source of inoculum is mainly infected potato seed tubers. Symptoms develop and worsen in storage because the conditions are conducive to sporulation. The ideal conditions for the spread of this disease are high temperatures and high humidity. There are also many cultural practices that favor spread and development. There are multiple ways to help control the disease.

<i>Meloidogyne arenaria</i> Species of roundworm

Meloidogyne arenaria is a species of plant pathogenic nematodes. This nematode is also known as the peanut root knot nematode. The word "Meloidogyne" is derived from two Greek words that mean "apple-shaped" and "female". The peanut root knot nematode, M. arenaria is one of the "major" Meloidogyne species because of its worldwide economic importance. M. arenaria is a predominant nematode species in the United States attacking peanut in Alabama, Florida, Georgia, and Texas. The most damaging nematode species for peanut in the USA is M. arenaria race 1 and losses can exceed 50% in severely infested fields. Among the several Meloidogyne species that have been characterized, M. arenaria is the most variable both morphologically and cytologically. In 1949, two races of this nematode had been identified, race 1 which reproduces on peanut and race 2 which cannot do so. However, in a recent study, three races were described. López-Pérez et al (2011) had also studied populations of M. arenaria race 2, which reproduces on tomato plants carrying the Mi gene and race 3, which reproduces on both resistant pepper and tomato.

<i>Meloidogyne javanica</i> Species of roundworm

Meloidogyne javanica is a species of plant-pathogenic nematodes. It is one of the tropical root-knot nematodes and a major agricultural pest in many countries. It has many hosts. Meloidogyne javanica reproduces by obligatory mitotic parthenogenesis (apomixis).

<i>Pratylenchus penetrans</i> Species of roundworm

Pratylenchus penetrans is a species of nematode in the genus Pratylenchus, the lesion nematodes. It occurs in temperate regions worldwide, regions between the subtropics and the polar circles. It is an animal that inhabits the roots of a wide variety of plants and results in necrotic lesions on the roots. Symptoms of P. penetrans make it hard to distinguish from other plant pathogens; only an assay of soil can conclusively diagnose a nematode problem in the field. P. penetrans is physically very similar to other nematode species, but is characterized by its highly distinctive mouthpiece. P. penetrans uses its highly modified mouth organs to rupture the outer surface of subterranean plant root structures. It will then enter into the root interior and feed on the plant tissue inside. P. penetrans is considered to be a crop parasite and farmers will often treat their soil with various pesticides in an attempt to eliminate the damage caused by an infestation. In doing this, farmers will also eliminate many of the beneficial soil fauna, which will lead to an overall degradation of soil quality in the future. Alternative, more environmentally sustainable methods to control P. penetrans populations may be possible in certain regions.

<i>Ditylenchus dipsaci</i> Species of flowering plant

Ditylenchus dipsaci is a plant pathogenic nematode that primarily infects onion and garlic. It is commonly known as the stem nematode, the stem and bulb eelworm, or onion bloat. Symptoms of infection include stunted growth, discoloration of bulbs, and swollen stems. D. dipsaci is a migratory endoparasite that has a five-stage lifecycle and the ability to enter into a dormancy stage. D. dipsaci enters through stomata or plant wounds and creates galls or malformations in plant growth. This allows for the entrance of secondary pathogens such as fungi and bacteria. Management of disease is maintained through seed sanitation, heat treatment, crop rotation, and fumigation of fields. D. dipsaci is economically detrimental because infected crops are unmarketable.

Helicotylenchus multicinctus is a plant pathogenic nematode that affects primarily bananas and plantains. Nematodes of the genus Helicotylenchus are spiral nematodes and feed on a large variety of plant species.

<i>Paratylenchus hamatus</i> Species of roundworm

Paratylenchus hamatus, the fig pin nematode, is a species of migratory plant endoparasites, that causes lesions on plant roots resulting in symptoms of chlorosis, wilting and ultimately yield losses. They move and feed on different parts of host tissue throughout their life cycle in order to find enough susceptible host tissue to survive and reproduce. A wide range of host plant species are susceptible to the fig pin nematode, including many valuable fruit and vegetable crops such as figs, carrots and celery. They are also commonly found associated with woody perennials in California. P. hamatus inhabits soils in both Europe and North America, and was originally isolated from fig in central California in 1950.

<i>Tobacco rattle virus</i> Species of virus

Tobacco rattle virus (TRV) is a pathogenic plant virus. Over 400 species of plants from 50 families are susceptible to infection.

Strawberry foliar nematode, or strawberry crimp nematode, is a disease caused by Aphelenchoides fragariae, a plant pathogenic nematode. It is common in strawberries and ornamental plants and can greatly affect plant yield and appearance, resulting in a loss of millions of dollars of revenue. Symptoms used to diagnose the disease are angular, water soaked lesions and necrotic blotches. Aphelenchoides fragariae is the nematode pathogen that causes the disease. Its biological cycle includes four life stages, three of which are juvenile. The nematode can undergo multiple life cycles in one growing season when favorable conditions are present. The crowns, runners, foliage, and new buds of the plant via stylet penetration or through the stomata can be infected. The best management practices for this disease are sanitation, prevention of induction of the pathogen to the environment, and planting clean seed or starter plants.

<span class="mw-page-title-main">Bacterial soft rot</span> Bacterial plant disease

Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and affects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts, but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquid mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields.

Pratylenchus alleni is a migratory endoparasitic nematode, living inside of plant roots and feeding on parenchyma cells in the root cortex. P. alleni is an obligate biotroph, meaning it must have a living host in order to survive. Due to their incredibly broad host range, Pratylenchus species fall third in total economic impact, finishing just behind cyst nematodes and root knot nematodes (Meloidogyne). In Canada, it was isolated for the first time in 2011 in a soybean field.

<span class="mw-page-title-main">Blackleg (potatoes)</span> Bacterial disease of potato plants

Blackleg is a plant disease of potato caused by pectolytic bacteria that can result in stunting, wilting, chlorosis of leaves, necrosis of several tissues, a decline in yield, and at times the death of the potato plant. The term "blackleg" originates from the typical blackening and decay of the lower stem portion, or "leg", of the plant.

Scutellonema bradys, also known as yam nematode, is a migratory endoparasitic nematode causing major damage to yam crop in many African tropical regions, as well in parts of South and Central America and Asia. They can cause reduction of 20-30% in tuber weight at harvest.

References

  1. Ferris, Howard. "Ditylenchus Destructor". UC-Davis. Archived from the original on 12 June 2010. Retrieved 4 December 2013.
  2. AgroAtlas
  3. Basson S, De Waele DG, Meyer AJ (1991). "Population Dynamics of Ditylenchus destructor on Peanut". Journal of Nematology. 23 (4): 485–90. PMC   2619176 . PMID   19283159.
  4. 1 2 3 4 5 6 7 8 "Invasive Species Compendium". CABI. Retrieved 23 October 2013.
  5. 1 2 Anderson, R. V.; Darling, H. M. (1964). "Embryology and reproduction of Ditylenchus destructor Thorne, with emphasis on gonad development". Proceedings of the Helminthological Society of Washington. 31 (2): 240–256. Retrieved 21 October 2013.
  6. Shapiro-Ilan, David. "Nematodes". Cornell University. Retrieved 13 November 2013.
  7. 1 2 3 4 5 6 7 8 "Data Sheets on Quarantined Pests" (PDF). CABI. Archived from the original (PDF) on 22 October 2013. Retrieved 22 October 2013.
  8. 1 2 3 4 5 6 "Wisconsin Pest Survey Fact Sheet" (PDF). Wisconsin Department of Agriculture, Trade, and Consumer Protection. Retrieved 22 October 2013.
  9. 1 2 "Ditylenchus destructor and Ditylenchus dipsaci". EPPO Bulletin. 38 (3): 363–373. 2008. doi: 10.1111/j.1365-2338.2008.01247.x .
  10. 1 2 "Ditylenchus destructor Thorne - Potato Rot Nematode". Canadian Food Inspection Agency. 2012-01-11. Retrieved 5 November 2013.
  11. Jones, B. L.; D. De Waele (1990). "Histopathology of Ditylenchus destructor on Peanut". Journal of Nematology. 22 (3): 268–272. PMC   2619049 . PMID   19287720.