Exoneura robusta | |
---|---|
Exoneura robusta | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Apidae |
Genus: | Exoneura |
Species: | E. robusta |
Binomial name | |
Exoneura robusta Cockerell, 1922 | |
Exoneura robusta is a species of the primitively eusocial allodapine bee, belonging to the genus commonly referred to as "reed bees". Their common name derives from their use of the soft pith of dead fern fronds as a nesting material. They are native to southeastern Australia, living in both montane and heathland habitats. E. robusta do not have a fixed pattern of sociality, but rather they are capable of adapting their social strategy to different environments. While typically univoltine (producing one brood per season), populations living in warmer habitats (such as those in higher latitude heathlands) are capable of producing two broods per season. This leads to the incidence of sibling rearing and eusocial behavior. E. robusta lack strict morphological castes, thus allowing for their plastic social behavior and dominance hierarchies.
Exoneura robusta is a species of Australian allodapine bee. [1] American zoologist Theodore Dru Alison Cockerell first described E. robusta in 1922. It belongs in Apidae family within the order Hymenoptera, which consists of ants, wasps, sawflies, and bees. The species was initially classified as the montane population of Exoneura bicolor, but was more recently reclassified as E. robusta. [2] Bees in the genus Exoneura are commonly referred to as "reed bees", due to the substrate in which they build their nests. [3]
E. robusta have a black head and thorax, and an orange-brown abdomen. Their legs are yellow-orange, and they have hind wings. They are capable of delivering a small sting. [3] They can be identified by their nest site, as they almost exclusively build their nests in the dead fronds of the tree fern Cyathea australis . [1] [4] Newly founded nests can be identified from a reused nest due to their clean appearance that shows only traces of pollen. In contrast, reused nests have a dark coloration caused by the aging of pollen and nectar from the previous year's brood-rearing activities. [5]
E. robusta are native to southeastern Australia. [6] They can be found in both montane and heathland habitats. In montane habitats, they build their nests in the dead fronds of C. australis, while in heathland habitat they tend to nest in eucalyptus branches. [1] Their nests are constructed in the pithy center of frond stems, and consist of a single, undivided burrow. [7] E. robusta is an important pollinator in the forests of southeastern Australia. As will be discussed in detail in a later section, the sociality of E. robusta is influenced by its habitat.
New nests are founded only during a two-week period in early spring. These bees typically do not stray far from their birth nest during colonization, leading to a low dispersal rate. An unusual behavior for most bees, E. robusta colonies will be co-founded by two to eight females. [7] These co-foundresses are typically related, but if no kin is available they will co-found a colony with unrelated females. [5] Egg laying occurs during the end of winter and throughout the spring, and new adults emerge from their pupae (eclose) during the summer. [1] Adults overwinter, and nests can be reused for six to ten years by the descendants of the founders. [7] E. robusta is generally univoltine, meaning they produce only one brood per season. However, this does depend on habitat, which will be discussed in a later section. Colony sizes tend to be small, with an average nest containing 6.7 offspring. The most productive females produce an average of 4.7 offspring in a season. [5]
E. robusta have very adaptable (plastic) behavior compared to other bee species. They have no morphological castes and females have the option of nesting alone or in groups. [5] However, in larger colonies they do show behavioral differentiation in which colony members will specialize as guards, nurses, or foragers. It is important to note that these differences are behavioral, not morphological, meaning that every colony member has the biological capacity to perform any role. [2] The social structure of E. robusta is polyphenic, meaning different behavioral phenotypes can arise from the same genotype based upon environmental conditions. Depending on habitat, these bees can exhibit solitary, semisocial, quasisocial, or eusocial colony structure. The type of sociality found in this species of bee largely depends upon the number of broods produced per season. In most cases, only one brood is produced per season, leading to a quasisocial organization. However, some heathland populations have been shown to produce two broods per season, allowing for the incidence of sibling rearing and therefore the presence of eusociality. [1] Essentially, social polyphenism allows E. robusta to respond to changing environments by keeping their behavior plastic.
Reproductive hierarchies do not occur in newly founded nests, whereas a social dominance structure is developed in reused nests. In newly founded nests, a quasisocial organization is found in which all founding members are reproductive and a social hierarchy does not exist. Once a nest enters its second or later year of use, the first female to eclose takes on a reproductively dominant status resulting in a semisocial organization. [5] This difference in eclosion rate can be as close as a few days; a female emerging from her pupa only a day before the other offspring in the nest is sufficient to establish the reproductive hierarchy. Females that eclose later tend to become foragers and will have higher mortality rates than reproductive females. First eclosed females take on a guarding role, which increases their risk of danger in from predators and competitors at the nest entrance. However, the increased risk of guarding pays the reproductively dominant females because it allows them to regulate the reproduction of their nestmates. Dominants are much less likely to allow a female to return into the nest after she has interacted with a foreign male. [4] In contrast, eviction from the nest has not been observed in newly founded nests because the cofoundresses behave in an egalitarian, cooperative manner. [5] It has been suggested that dominants control reproduction in nestmates through pheromonal signals that inhibit ovary development in the non-dominant females. [5] Since reproductive status is not conferred through strict morphological differences, a dominant female is capable of passing on her dominant status to her daughters through her own behaviors. By preventing her nestmates from breeding through nest guarding (or evicting them if they do), she can ensure that her daughters will be the first eclosed and therefore will gain dominant status as she did. Secondary reproductives will either lay their inseminated eggs later, leading to their daughters also becoming secondary, or they will lay uninseminated eggs that will become males who do not compete for dominance. One reason why subordinates may acquiesce to this system is because group living is very important in E. robusta. Therefore, it may better pay a subordinate to refrain from mating, remain in the nest, and produce sons rather than trying to found a new nest solitarily. [4]
One question raised by the eviction of inseminated females is why male E. robusta would produce a scent marker at all. If this scent marker is what prevents subordinate females from re-entering the nest, it would hypothetically make sense for males to not produce a scent marker so the female could rear his offspring within the colony. The most likely explanation is that the scent is an unavoidable consequence of mating, a cue that cannot be avoided. Since females mate only once, it is not at all likely that the scent has anything to do with discouraging other males from mating with a given female. Another possibility is that the scent marker is what attracts a female to mate with a male in the first place, thus making it quite necessary. The presence of the scent could be adaptive or it could be a by product, not adaptive for the producing male. [4]
Due to the dominance hierarchy found in E. robusta, reproductive skew (the unequal sharing of reproduction in a group) is common in reused nests. The more developed ovaries of dominant females allow them to produce more offspring than secondary reproductives. A third type of "worker" female has entirely undeveloped ovaries. Reproductive skew occurs less when relatedness is high in a E. robusta colony. Both the tug-of-war and restraint models of reproductive skew are compatible with this finding. Both models predict that dominant breeders are unable to completely control the reproduction of the subordinates. [5] The restraint model applies to reproductive skew in reused nests because subordinates will restrain their reproduction in order to avoid eviction. However, the restraint model does not explain reproductive skew in new nests where evictions do not occur. [5] Typically, reproductive skew would be a good indicator of fitness, due to an increase in total offspring being produced. However, because dominance is passed from mother to daughter behaviorally, reproductive skew alone may not determine fitness. The total number of daughters produced may not translate into the most genes being spread, because only the production of dominant females significantly increases fitness. [4]
Sex allocation in E. robusta is heavily influenced by the benefits of group living. In E. robusta, brood production increases with the number of adults in the colony. It was found that less than 4% of females nest solitarily, supporting the idea that group living is very important for successful brood rearing. [4] Nests tend to contain few offspring at a time, and the sex ratio is almost always female-biased, particularly in smaller nests. [5] A functioning colony is made up of working females (males do not work), so only daughters can increase the productiveness of a colony. More males will typically be produced in a larger brood, because enough daughters can be produced without a need for a skewed sex ratio. [2] The advantages of high female sex ratio include the partitioning of labor among female nestmates, such as foraging, nursing, and guarding. An increased number of females can increase brood production through the constant presence of a guard, because predation by ants can entirely wipe out the brood in an unguarded nest. [2]
Colonies of E. robusta are often founded by multiple females, meaning the offspring in a colony are not nearly as closely related as is seen in eusocial bees. Relatedness among immature bees within colonies has been found to be 0.439, which is significantly lower than the expected relatedness of 0.75 under haplodiploidy with single once-mated queens. This supports the observation that nests are founded by multiple females, since no primitively eusocial bee or wasp mates multiply. The relatedness among immature bees is higher than among adult bees (which was found to be 0.41 in one study), suggesting that some of the adult bees in a colony migrated from another nest. [5] [7] The relatedness among females founding a new nest together has been found to be as high as 0.6. [4]
The importance of group living in E. robusta helps to explain both the relatedness found within colonies as well as their lack of kin discrimination. Females prefer nesting with kin, but will nest with unrelated individuals when kin is not available. Females tend to found new nests with females they grew up with, regardless of whether they are related or not. [5] There does not appear to be any kin recognition device in E. robusta. This could be because differential treatment of colony members based upon relatedness would actually reduce the colony's efficiency, since time would be wasted in determining kinship. Therefore, if kin recognition lowered all colony members' fitness, equal treatment of all colony members would be selected for. [6] This is the case in E. robusta, where the benefits of group living outweigh the costs of helping non-related nestmates. Another potential reason that kin recognition devices were not developed in this species is because the cost of workers accidentally rejecting kin would be higher than the benefits of successfully rejecting non-kin. However, as previously discussed, there is a relatively high rate of relatedness within nests. [6]
E. robusta is commonly parasitized by Inquilina schwarzi, a species of inquiline parasitic bees. Due to the lack of a rigid caste system in E. robusta, it is easier for I. schwarzi to integrate themselves within the colony. The structure of the nest is also taken advantage of by this parasite. Because the brood is reared in a communal tunnel, females cannot restrict feeding to only their own offspring. [8] Due to the communal nature of brood rearing, it is quite easy for I. schwarzi to add their eggs into the common tunnel. Longer nests (which are older) are more likely to be parasitized. This may be due to the fact that an older nest simply has a greater cumulative likelihood of being parasitized. It may also be due to larger nests having a stronger scent and therefore being easier to locate. Another reason could be that I. schwarzi seek out older nests because they are more likely to have larger amounts of resources. Parasitization by I. schwarzi has multiple effects on the behavior of E. robusta. First, parasitized nests tend to have a larger size post-dispersal, suggesting that the parasite reduces the rate of host dispersal [8] This would be beneficial to the parasite because more hosts means a greater number of resources being produced, and if the colony stays intact the parasite does not have to move. During the spring, I. schwarzi actually disrupt the dominance hierarchy in a way that makes it less rigid. [8] I. schwarzi will typically wait until host eggs have been laid before laying their own, so that the odor of their eggs will be masked and harder to detect. Generally, I. schwarzi tend to make as little impact as possible on E. robusta colonies because the parasite’s survival depends upon the survival of the host. However, the parasites do add enough eggs so as to place additional pressure upon the resources of the colony. [8]
Behavioral ecology, also spelled behavioural ecology, is the study of the evolutionary basis for animal behavior due to ecological pressures. Behavioral ecology emerged from ethology after Niko Tinbergen outlined four questions to address when studying animal behaviors: What are the proximate causes, ontogeny, survival value, and phylogeny of a behavior?
Halictus rubicundus, the orange-legged furrow bee, is a species of sweat bee found throughout the Northern Hemisphere. H. rubicundus entered North America from the Old World during one of two main invasions of Halictus subgenera. These invasions likely occurred via the Bering land bridge at times of low sea level during the Pleistocene epoch.
Lasioglossum malachurum, the sharp-collared furrow bee, is a small European halictid bee. This species is obligately eusocial, with queens and workers, though the differences between the castes are not nearly as extreme as in honey bees. Early taxonomists mistakenly assigned the worker females to a different species from the queens. They are small, shiny, mostly black bees with off-white hair bands at the bases of the abdominal segments. L. malachurum is one of the more extensively studied species in the genus Lasioglossum, also known as sweat bees. Researchers have discovered that the eusocial behavior in colonies of L. malachurum varies significantly dependent upon the region of Europe in which each colony is located.
Reproductive suppression is the prevention or inhibition of reproduction in otherwise healthy adult individuals. It includes delayed sexual maturation (puberty) or inhibition of sexual receptivity, facultatively increased interbirth interval through delayed or inhibited ovulation or spontaneous or induced abortion, abandonment of immature and dependent offspring, mate guarding, selective destruction and worker policing of eggs in some eusocial insects or cooperatively breeding birds, and infanticide, and infanticide in carnivores of the offspring of subordinate females either by directly killing by dominant females or males in mammals or indirectly through the withholding of assistance with infant care in marmosets and some carnivores. The Reproductive Suppression Model argues that "females can optimize their lifetime reproductive success by suppressing reproduction when future conditions for the survival of offspring are likely to be greatly improved over present ones”. When intragroup competition is high it may be beneficial to suppress the reproduction of others, and for subordinate females to suppress their own reproduction until a later time when social competition is reduced. This leads to reproductive skew within a social group, with some individuals having more offspring than others. The cost of reproductive suppression to the individual is lowest at the earliest stages of a reproductive event and reproductive suppression is often easiest to induce at the pre-ovulatory or earliest stages of pregnancy in mammals, and greatest after a birth. Therefore, neuroendocrine cues for assessing reproductive success should evolve to be reliable at early stages in the ovulatory cycle. Reproductive suppression occurs in its most extreme form in eusocial insects such as termites, hornets and bees and the mammalian naked mole rat which depend on a complex division of labor within the group for survival and in which specific genes, epigenetics and other factors are known to determine whether individuals will permanently be unable to breed or able to reach reproductive maturity under particular social conditions, and cooperatively breeding fish, birds and mammals in which a breeding pair depends on helpers whose reproduction is suppressed for the survival of their own offspring. In eusocial and cooperatively breeding animals most non-reproducing helpers engage in kin selection, enhancing their own inclusive fitness by ensuring the survival of offspring they are closely related to. Wolf packs suppress subordinate breeding.
The European paper wasp is one of the most common and well-known species of social wasps in the genus Polistes. Its diet is more diverse than those of most Polistes species—many genera of insects versus mainly caterpillars in other Polistes—giving it superior survivability compared to other wasp species during a shortage of resources.
Bombus bohemicus, also known as the gypsy's cuckoo bumblebee, is a species of socially parasitic cuckoo bumblebee found in most of Europe with the exception of the southern Iberian Peninsula and Iceland. B. bohemicus practices inquilinism, or brood parasitism, of other bumblebee species. B. bohemicus is a generalist parasite, successfully invading several species from genus Bombus. The invading queen mimics the host nest's chemical signals, allowing her to assume a reproductively dominant role as well as manipulation of host worker fertility and behavior.
Eusociality, the highest level of organization of sociality, is defined by the following characteristics: cooperative brood care, overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society which are sometimes referred to as 'castes'. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform at least one behavior characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.
Ropalidia marginata is an Old World species of paper wasp. It is primitively eusocial, not showing the same bias in brood care seen in other social insects with greater asymmetry in relatedness. The species employs a variety of colony founding strategies, sometimes with single founders and sometimes in groups of variable number. The queen does not use physical dominance to control workers; there is evidence of pheromones being used to suppress other female workers from overtaking queenship.
Eusociality evolved repeatedly in different orders of animals, notably termites and the Hymenoptera. This 'true sociality' in animals, in which sterile individuals work to further the reproductive success of others, is found in termites, ambrosia beetles, gall-dwelling aphids, thrips, marine sponge-dwelling shrimp, naked mole-rats, and many genera in the insect order Hymenoptera. The fact that eusociality has evolved so often in the Hymenoptera, but remains rare throughout the rest of the animal kingdom, has made its evolution a topic of debate among evolutionary biologists. Eusocial organisms at first appear to behave in stark contrast with simple interpretations of Darwinian evolution: passing on one's genes to the next generation, or fitness, is a central idea in evolutionary biology.
Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. Polistes metricus is dark colored, with yellow tarsi and black tibia. Nests of Polistes metricus can be found attached to the sides of buildings, trees, and shrubbery.
Within the insect order Hymenoptera, the Halictinae are the largest, most diverse, and most recently diverged of the four halictid subfamilies. They comprise over 2400 bee species belonging to the five taxonomic tribes Augochlorini, Thrinchostomini, Caenohalictini, Sphecodini, and Halictini, which some entomologists alternatively organize into the two tribes Augochlorini and Halictini.
Synalpheus regalis is a species of snapping shrimp that commonly live in sponges in the coral reefs along the tropical West Atlantic. They form a prominent component of the diverse marine cryptofauna of the region. For the span of their entire lives, they live in the internal canals of the host sponge, using it as a food resource and shelter. It has been shown that colonies contain over 300 individuals, but only one reproductive female. Also, larger colony members, most of which apparently never breed, defend the colony against heterospecific intruders. This evidence points towards the first known case of eusociality in a marine animal.
Formica truncorum is a species of wood ant from the genus Formica. It is distributed across a variety of locations worldwide, including central Europe and Japan. Workers can range from 3.5 to 9.0mm and are uniquely characterized by small hairs covering their entire bodies. Like all other ants, F. truncorum is eusocial and demonstrates many cooperative behaviors that are unique to its order. Colonies are either monogynous, with one queen, or polygynous, with many queens, and these two types of colonies differ in many characteristics.
Halictus ligatus is a species of sweat bee from the family Halictidae, among the species that mine or burrow into the ground to create their nests. H. ligatus, like Lasioglossum zephyrus, is a primitively eusocial bee species, in which aggression is one of the most influential behaviors for establishing hierarchy within the colony, and H. ligatus exhibits both reproductive division of labor and overlapping generations.
Polistes canadensis is a species of red paper wasp found in the Neotropical realm. It is a primitively eusocial wasp as a member of the subfamily Polistinae. A largely predatory species, it hunts for caterpillar meat to supply its colony, often supplementing its developing larvae with nectar. The most widely distributed American species of the genus Polistes, it colonizes multiple combs, which it rears year-round.
Belonogaster petiolata is a species of primitively eusocial wasp that dwells in southern Africa, in temperate or subhumid climate zones. This wasp species has a strong presence in South Africa and has also been seen in northern Johannesburg. Many colonies can be found in caves. The Sterkfontein Caves in South Africa, for example, contain large populations of B. petiolata.
Polistes biglumis is a species of social wasp within Polistes, the most common genus of paper wasp. It is distinguished mainly by its tendency to reside in montane climates in meadows or alpine areas. Selection pressure from the wasp's environment has led to several idiosyncrasies of its behavior and lifecycle with respect to its relative species in the genus Polistes. It alone among paper wasps is often polyandrous. In addition, it has a truncated nesting season that gives rise to unique competitive dynamics among females of the species. P. biglumis wasps use an odor-based recognition system that is the basis for all wasp-to-wasp interaction of the species. The wasp's lifecycle is highly intertwined with that of Polistes atrimandibularis, an obligate social parasite wasp that frequently invades the combs of P. biglumis wasps.
Megalopta genalis is a species of the family Halictidae, otherwise known as the sweat bees. The bee is native to Central and South America. Its eyes have anatomical adaptations that make them 27 times more sensitive to light than diurnal bees, giving it the ability to be nocturnal. However, its eyes are not completely different from other diurnal bees, but are still apposition compound eyes. The difference therefore lies purely in adaptations to become nocturnal, increasing the success of foraging and minimizing the danger of doing so from predation. This species has served as a model organism in studies of social behavior and night vision in bees.
Halictus sexcinctus, commonly referred to as the six-banded furrow bee, is a species of sweat bee found throughout Europe and as far east as Asian Turkey and Iraq. The H. sexcinctus can be easily confused with the closely related species, Halictus scabiosae, due to very similar morphological features. H. sexcinctus show a social polymorphism in which different colonies can exhibit solitary, communal, or eusocial structure. Due to this large variance in social organization, it was suspected that it was not one species at all, but rather multiple, cryptic species. However, genetic analysis was able to confirm these varying populations as one species. H. sexcinctus will forage from multiple flower species, but prefers plant species with wide-open flowers. Their nests can be found dug into the ground in loamy or sandy soil.
Bombus vancouverensis is a common species of eusocial bumblebee of the subgenus Pyrobombus. B. vancouverensis inhabits mountainous regions of western North America, where it has long been considered as a synonym of Bombus bifarius, and essentially all of the literature on bifarius refers instead to vancouverensis. B. vancouverensis has been identified as one of the two species of bumblebee observed to use pheromones in kin recognition. The other is the frigid bumblebee, Bombus frigidus.