F-score

Last updated
Precision and recall Precisionrecall.svg
Precision and recall

In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly, and the recall is the number of true positive results divided by the number of all samples that should have been identified as positive. Precision is also known as positive predictive value, and recall is also known as sensitivity in diagnostic binary classification.

Contents

The F1 score is the harmonic mean of the precision and recall. It thus symmetrically represents both precision and recall in one metric. The more generic score applies additional weights, valuing one of precision or recall more than the other.

The highest possible value of an F-score is 1.0, indicating perfect precision and recall, and the lowest possible value is 0, if precision and recall are zero.

Etymology

The name F-measure is believed to be named after a different F function in Van Rijsbergen's book, when introduced to the Fourth Message Understanding Conference (MUC-4, 1992). [1]

Definition

The traditional F-measure or balanced F-score (F1 score) is the harmonic mean of precision and recall: [2]

.

Fβ score

A more general F score, , that uses a positive real factor , where is chosen such that recall is considered times as important as precision, is:

.

In terms of Type I and type II errors this becomes:

.

Two commonly used values for are 2, which weighs recall higher than precision, and 0.5, which weighs recall lower than precision.

The F-measure was derived so that "measures the effectiveness of retrieval with respect to a user who attaches times as much importance to recall as precision". [3] It is based on Van Rijsbergen's effectiveness measure

.

Their relationship is where .

Diagnostic testing

This is related to the field of binary classification where recall is often termed "sensitivity".

Predicted conditionSources: [4] [5] [6] [7] [8] [9] [10] [11]
Total population
= P + N
Predicted positive (PP)Predicted negative (PN) Informedness, bookmaker informedness (BM)
= TPR + TNR − 1
Prevalence threshold (PT)
= TPR × FPR - FPR/TPR - FPR
Actual condition
Positive (P) [lower-alpha 1] True positive (TP),
hit [lower-alpha 2]
False negative (FN),
miss, underestimation
True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power
= TP/P= 1 − FNR
False negative rate (FNR),
miss rate
type II error [lower-alpha 3]
= FN/P= 1 − TPR
Negative (N) [lower-alpha 4] False positive (FP),
false alarm, overestimation
True negative (TN),
correct rejection [lower-alpha 5]
False positive rate (FPR),
probability of false alarm, fall-out
type I error [lower-alpha 6]
= FP/N= 1 − TNR
True negative rate (TNR),
specificity (SPC), selectivity
= TN/N= 1 − FPR
Prevalence
= P/P + N
Positive predictive value (PPV), precision
= TP/PP= 1 − FDR
False omission rate (FOR)
= FN/PN= 1 − NPV
Positive likelihood ratio (LR+)
= TPR/FPR
Negative likelihood ratio (LR−)
= FNR/TNR
Accuracy (ACC)
= TP + TN/P + N
False discovery rate (FDR)
= FP/PP= 1 − PPV
Negative predictive value (NPV)
= TN/PN= 1 − FOR
Markedness (MK), deltaP (Δp)
= PPV + NPV − 1
Diagnostic odds ratio (DOR)
= LR+/LR−
Balanced accuracy (BA)
= TPR + TNR/2
F1 score
= 2 PPV × TPR/PPV + TPR= 2 TP/2 TP + FP + FN
Fowlkes–Mallows index (FM)
= PPV × TPR
Matthews correlation coefficient (MCC)
= TPR × TNR × PPV × NPV- FNR × FPR × FOR × FDR
Threat score (TS), critical success index (CSI), Jaccard index
= TP/TP + FN + FP
  1. the number of real positive cases in the data
  2. A test result that correctly indicates the presence of a condition or characteristic
  3. Type II error: A test result which wrongly indicates that a particular condition or attribute is absent
  4. the number of real negative cases in the data
  5. A test result that correctly indicates the absence of a condition or characteristic
  6. Type I error: A test result which wrongly indicates that a particular condition or attribute is present
Normalised harmonic mean plot where x is precision, y is recall and the vertical axis is F1 score, in percentage points Harmonic mean 3D plot from 0 to 100.png
Normalised harmonic mean plot where x is precision, y is recall and the vertical axis is F1 score, in percentage points
Precision-Recall Curve: points from different thresholds are color coded, the point with optimal F-score is highlighted in red PR curve with optimal fscore.png
Precision-Recall Curve: points from different thresholds are color coded, the point with optimal F-score is highlighted in red

Dependence of the F-score on class imbalance

Precision-recall curve, and thus the score, explicitly depends on the ratio of positive to negative test cases. [12] This means that comparison of the F-score across different problems with differing class ratios is problematic. One way to address this issue (see e.g., Siblini et al., 2020 [13] ) is to use a standard class ratio when making such comparisons.

Applications

The F-score is often used in the field of information retrieval for measuring search, document classification, and query classification performance. [14] It is particularly relevant in applications which are primarily concerned with the positive class and where the positive class is rare relative to the negative class.

Earlier works focused primarily on the F1 score, but with the proliferation of large scale search engines, performance goals changed to place more emphasis on either precision or recall [15] and so is seen in wide application.

The F-score is also used in machine learning. [16] However, the F-measures do not take true negatives into account, hence measures such as the Matthews correlation coefficient, Informedness or Cohen's kappa may be preferred to assess the performance of a binary classifier. [17]

The F-score has been widely used in the natural language processing literature, [18] such as in the evaluation of named entity recognition and word segmentation.

Properties

The F1 score is the Dice coefficient of the set of retrieved items and the set of relevant items. [19]

Criticism

David Hand and others criticize the widespread use of the F1 score since it gives equal importance to precision and recall. In practice, different types of mis-classifications incur different costs. In other words, the relative importance of precision and recall is an aspect of the problem. [22]

According to Davide Chicco and Giuseppe Jurman, the F1 score is less truthful and informative than the Matthews correlation coefficient (MCC) in binary evaluation classification. [23]

David M W Powers has pointed out that F1 ignores the True Negatives and thus is misleading for unbalanced classes, while kappa and correlation measures are symmetric and assess both directions of predictability - the classifier predicting the true class and the true class predicting the classifier prediction, proposing separate multiclass measures Informedness and Markedness for the two directions, noting that their geometric mean is correlation. [24]

Another source of critique of F1 is its lack of symmetry. It means it may change its value when dataset labeling is changed - the "positive" samples are named "negative" and vice versa. This criticism is met by the P4 metric definition, which is sometimes indicated as a symmetrical extension of F1. [25]

Difference from Fowlkes–Mallows index

While the F-measure is the harmonic mean of recall and precision, the Fowlkes–Mallows index is their geometric mean. [26]

Extension to multi-class classification

The F-score is also used for evaluating classification problems with more than two classes (Multiclass classification). A common method is to average the F-score over each class, aiming at a balanced measurement of performance. [27]

Macro F1

Macro F1 is a macro-averaged F1 score aiming at a balanced performance measurement. To calculate macro F1, two different averaging-formulas have been used: the F1 score of (arithmetic) class-wise precision and recall means or the arithmetic mean of class-wise F1 scores, where the latter exhibits more desirable properties. [28]

Micro F1

Micro F1 is the harmonic mean of micro precision (number of correct predictions normalized by false positives) and micro recall (number of correct predictions normalized by false negatives). Since in multi-class evaluation the overall amount of false positives equals the amount of false negatives, micro F1 is equivalent to Accuracy. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Binary classification</span> Dividing things between two categories

Binary classification is the task of classifying the elements of a set into one of two groups. Typical binary classification problems include:

<span class="mw-page-title-main">Logistic regression</span> Statistical model for a binary dependent variable

In statistics, the logistic model is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression estimates the parameters of a logistic model. In binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the independent variables can each be a binary variable or a continuous variable. The corresponding probability of the value labeled "1" can vary between 0 and 1, hence the labeling; the function that converts log-odds to probability is the logistic function, hence the name. The unit of measurement for the log-odds scale is called a logit, from logistic unit, hence the alternative names. See § Background and § Definition for formal mathematics, and § Example for a worked example.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Cluster analysis</span> Grouping a set of objects by similarity

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning.

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics.

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as error matrix, is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one; in unsupervised learning it is usually called a matching matrix.

<span class="mw-page-title-main">Receiver operating characteristic</span> Diagnostic plot of binary classifier ability

A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the performance of a binary classifier model at varying threshold values.

In machine learning, feature selection is the process of selecting a subset of relevant features for use in model construction. Feature selection techniques are used for several reasons:

<span class="mw-page-title-main">Coefficient of determination</span> Indicator for how well data points fit a line or curve

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

<span class="mw-page-title-main">Positive and negative predictive values</span> Statistical measures of whether a finding is likely to be true

The positive and negative predictive values are the proportions of positive and negative results in statistics and diagnostic tests that are true positive and true negative results, respectively. The PPV and NPV describe the performance of a diagnostic test or other statistical measure. A high result can be interpreted as indicating the accuracy of such a statistic. The PPV and NPV are not intrinsic to the test ; they depend also on the prevalence. Both PPV and NPV can be derived using Bayes' theorem.

<span class="mw-page-title-main">Ordinary least squares</span> Method for estimating the unknown parameters in a linear regression model

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable. Some sources consider OLS to be linear regression.

<span class="mw-page-title-main">Sensitivity and specificity</span> Statistical measure of a binary classification

In medicine and statistics, sensitivity and specificity mathematically describe the accuracy of a test that reports the presence or absence of a medical condition. If individuals who have the condition are considered "positive" and those who do not are considered "negative", then sensitivity is a measure of how well a test can identify true positives and specificity is a measure of how well a test can identify true negatives:

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

Youden's J statistic is a single statistic that captures the performance of a dichotomous diagnostic test. (Bookmaker) Informedness is its generalization to the multiclass case and estimates the probability of an informed decision.

<span class="mw-page-title-main">Precision and recall</span> Pattern-recognition performance metrics

In pattern recognition, information retrieval, object detection and classification, precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space.

In statistics, the phi coefficient is a measure of association for two binary variables.

The Fowlkes–Mallows index is an external evaluation method that is used to determine the similarity between two clusterings, and also a metric to measure confusion matrices. This measure of similarity could be either between two hierarchical clusterings or a clustering and a benchmark classification. A higher value for the Fowlkes–Mallows index indicates a greater similarity between the clusters and the benchmark classifications. It was invented by Bell Labs statisticians Edward Fowlkes and Collin Mallows in 1983.

<span class="mw-page-title-main">Evaluation of binary classifiers</span> Quantitative measurement of accuracy

Evaluation of a binary classifier typically assigns a numerical value, or values, to a classifier that represent its accuracy. An example is error rate, which measures how frequently the classifier makes a mistake.

Evaluation measures for an information retrieval (IR) system assess how well an index, search engine, or database returns results from a collection of resources that satisfy a user's query. They are therefore fundamental to the success of information systems and digital platforms.

P4 metric (also known as FS or Symmetric F ) enables performance evaluation of the binary classifier. It is calculated from precision, recall, specificity and NPV (negative predictive value). P4 is designed in similar way to F1 metric, however addressing the criticisms leveled against F1. It may be perceived as its extension.

References

  1. Sasaki, Y. (2007). "The truth of the F-measure" (PDF). Teach tutor mater. Vol. 1, no. 5. pp. 1–5.
  2. Aziz Taha, Abdel (2015). "Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool". BMC Medical Imaging. 15 (29): 1–28. doi: 10.1186/s12880-015-0068-x . PMC   4533825 . PMID   26263899.
  3. Van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). Butterworth-Heinemann.
  4. Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF). Pattern Recognition Letters. 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010. S2CID   2027090.
  5. Provost, Foster; Tom Fawcett (2013-08-01). "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking". O'Reilly Media, Inc.
  6. Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63.
  7. Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I. (eds.). Encyclopedia of machine learning. Springer. doi:10.1007/978-0-387-30164-8. ISBN   978-0-387-30164-8.
  8. Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2015-01-26). "WWRP/WGNE Joint Working Group on Forecast Verification Research". Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2019-07-17.
  9. Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation". BMC Genomics. 21 (1): 6-1–6-13. doi: 10.1186/s12864-019-6413-7 . PMC   6941312 . PMID   31898477.
  10. Chicco D, Toetsch N, Jurman G (February 2021). "The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation". BioData Mining. 14 (13): 13. doi: 10.1186/s13040-021-00244-z . PMC   7863449 . PMID   33541410.
  11. Tharwat A. (August 2018). "Classification assessment methods". Applied Computing and Informatics. 17: 168–192. doi: 10.1016/j.aci.2018.08.003 .
  12. Brabec, Jan; Komárek, Tomáš; Franc, Vojtěch; Machlica, Lukáš (2020). "On model evaluation under non-constant class imbalance". International Conference on Computational Science. Springer. pp. 74–87. arXiv: 2001.05571 . doi: 10.1007/978-3-030-50423-6_6 .
  13. Siblini, W.; Fréry, J.; He-Guelton, L.; Oblé, F.; Wang, Y. Q. (2020). "Master your metrics with calibration". In M. Berthold; A. Feelders; G. Krempl (eds.). Advances in Intelligent Data Analysis XVIII. Springer. pp. 457–469. arXiv: 1909.02827 . doi: 10.1007/978-3-030-44584-3_36 .
  14. Beitzel., Steven M. (2006). On Understanding and Classifying Web Queries (Ph.D. thesis). IIT. CiteSeerX   10.1.1.127.634 .
  15. X. Li; Y.-Y. Wang; A. Acero (July 2008). Learning query intent from regularized click graphs. Proceedings of the 31st SIGIR Conference. p. 339. doi:10.1145/1390334.1390393. ISBN   9781605581644. S2CID   8482989.
  16. See, e.g., the evaluation of the .
  17. Powers, David M. W (2015). "What the F-measure doesn't measure". arXiv: 1503.06410 [cs.IR].
  18. Derczynski, L. (2016). Complementarity, F-score, and NLP Evaluation. Proceedings of the International Conference on Language Resources and Evaluation.
  19. Manning, Christopher (April 1, 2009). An Introduction to Information Retrieval (PDF). Exercise 8.7: Cambridge University Press. p. 200. Retrieved 18 July 2022.{{cite book}}: CS1 maint: location (link)
  20. "What is the baseline of the F1 score for a binary classifier?".
  21. Lipton, Z.C., Elkan, C.P., & Narayanaswamy, B. (2014). F1-Optimal Thresholding in the Multi-Label Setting. ArXiv, abs/1402.1892.
  22. Hand, David. "A note on using the F-measure for evaluating record linkage algorithms - Dimensions". app.dimensions.ai. doi:10.1007/s11222-017-9746-6. hdl: 10044/1/46235 . S2CID   38782128 . Retrieved 2018-12-08.
  23. Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation". BMC Genomics. 21 (6): 6. doi: 10.1186/s12864-019-6413-7 . PMC   6941312 . PMID   31898477.
  24. Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Score to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63. hdl:2328/27165.
  25. Sitarz, Mikolaj (2022). "Extending F1 metric, probabilistic approach". arXiv: 2210.11997 [cs.LG].
  26. Tharwat A (August 2018). "Classification assessment methods". Applied Computing and Informatics. 17: 168–192. doi: 10.1016/j.aci.2018.08.003 .
  27. 1 2 Opitz, Juri (2024). "A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice". Transactions of the Association for Computational Linguistics. 12: 820–836. arXiv: 2404.16958 . doi:10.1162/tacl_a_00675.
  28. J. Opitz; S. Burst (2019). "Macro F1 and Macro F1". arXiv: 1911.03347 [stat.ML].