F connector

Last updated
F connector
F-Stecker und Kabel.jpg
Male F connector on cable
Type RF coaxial connector
Production history
Designer Eric E. Winston
Designed Early 1950s
Manufacturer Various
General specifications
Diameter
Hex drive (male and female)
A/F 716 in (11 mm)
Female
38 in (9.5 mm) external threads
Male
Varies by cable size
Cable Coaxial
Passband From 0 Hz to, at least, 2.15 GHz

The F connector (also F-type connector) is a coaxial RF connector commonly used for "over the air" terrestrial television, cable television and universally for satellite television and cable modems, usually with RG-6/U cable or with RG-59/U cable.

Contents

The F connector was invented by Eric E. Winston in the early 1950s while working for Jerrold Electronics on their development of cable television. [1] In the 1970s, it became commonplace on VHF, and later UHF, television antenna connections in the United States, as coaxial cables replaced twin-lead. It is now specified in IEC 61169-24:2019. [2]

Description

The F connector is an inexpensive, gendered, threaded, compression connector for radio frequency signals. It has good 75 Ω impedance match for frequencies well over 1 GHz [2] and has usable bandwidth up to several GHz.

Connectors mate using a 3/8-32UNEF thread. The female connector has a socket for the center conductor and external threads. The male connector has a center pin, and a captive nut with internal threads.[ citation needed ]

The design allows for low-cost construction, where cables are terminated almost exclusively with male connectors. The coaxial cable center conductor forms the pin, and cable dielectric extends up to the mating face of the connector. Thus, the male connector consists of only a body, which is generally crimped onto or screwed over the cable shielding braid, and a captive nut, neither of which require tight tolerances. Push-on versions are also available.[ citation needed ]

Female connectors are typically used on bulkheads or as couplers, often being secured with the same threads as for the connectors. They can be manufactured as a single piece, with center sockets and dielectric, entirely at the factory where tolerances can easily be controlled.[ citation needed ]

This design is sensitive to the surface properties of the inner conductor (which must be solid wire, not stranded).[ citation needed ]

Weatherproofing

The F connector is not weatherproof. Neither the threads nor the joint between male connector body and captive nut provide a water-tight seal. However, male connectors are commonly enhanced with an o-ring (of about 7 mm) inside the captive nut. This seals between the mating faces of both connectors, providing some protection for the center conductor.[ citation needed ]

Alternatively, waterproof versions or enclosures are recommended for outside use (for example, on antennas). Corrosion resistance, reliability of connector electrical conduction and water resistance can be improved by coating all bare copper wires and the connectors themselves with silicone grease. [3]

Usage

The cable and satellite television entities (as a near standard practice) use compression fittings with F connectors on customer premises. In Europe, block down-converted satellite signals (950–2150 MHz) from LNBs and DC power and block signalling from satellite receivers are near exclusively passed through F connectors. [4]

Flex F connectors

Push-on (aka Flex) F connectors provide poorer shielding against microwave signals of high field strength. This leakage problem is more an artifact of bent or partly broken push on connectors, but is mostly not observed with compression connectors. Nearby television, FM radio, mobile & cordless phones, government radiolocation (54–1,002 MHz) [5] transmitters can potentially interfere with a CATV or DTH Satellite reception or operation if the Flex connector is poorly installed.

See also

Related Research Articles

<span class="mw-page-title-main">Coaxial cable</span> Electrical cable type with concentric inner conductor, insulator, and conducting shield

Coaxial cable, or coax, is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.

<span class="mw-page-title-main">Feed horn</span>

A feed horn is a small horn antenna used to couple a waveguide to e.g. a parabolic dish antenna or offset dish antenna for reception or transmission of microwaves. A typical application is the use for satellite television reception with a satellite dish. In that case the feed horn can either be a separate part used together with e.g. a "low-noise block downconverter" (LNB), or more typically today is integrated into a "low-noise block feedhorn" (LNBF).

<span class="mw-page-title-main">BNC connector</span> RF connector for coax cable

The BNC connector is a miniature quick connect/disconnect radio frequency connector used for coaxial cable. It is designed to maintain the same characteristic impedance of the cable, with 50 ohm and 75 ohm types being made. It is usually applied for video and radio frequency connections up to about 2 GHz and up to 500 volts. The connector has a twist to lock design with two lugs in the female portion of the connector engaging a slot in the shell of the male portion. The type was introduced on military radio equipment in the 1940s and has since become widely applied in radio systems, and is a common type of video connector. Similar radio-frequency connectors differ in dimensions and attachment features, and may allow for higher voltages, higher frequencies, or three-wire connections.

A satellite dish is a dish-shaped type of parabolic antenna designed to receive or transmit information by radio waves to or from a communication satellite. The term most commonly means a dish which receives direct-broadcast satellite television from a direct broadcast satellite in geostationary orbit.

<span class="mw-page-title-main">N connector</span> RF connecter for coaxial cables

The N connector is a threaded, weatherproof, medium-size RF connector used to join coaxial cables. It was one of the first connectors capable of carrying microwave-frequency signals, and was invented in the 1940s by Paul Neill of Bell Labs, after whom the connector is named.

<span class="mw-page-title-main">Low-noise block downconverter</span> Receiving device on satellite dishes

A low-noise block downconverter (LNB) is the receiving device mounted on satellite dishes used for satellite TV reception, which collects the radio waves from the dish and converts them to a signal which is sent through a cable to the receiver inside the building. Also called a low-noise block, low-noise converter (LNC), or even low-noise downconverter (LND), the device is sometimes inaccurately called a low-noise amplifier (LNA).

<span class="mw-page-title-main">TNC connector</span>

The TNC connector is a threaded version of the BNC connector.

<span class="mw-page-title-main">SMA connector</span> Coaxial cable connector with semi-precision minimal connector interface developed in the 1960s

SMA connectors are semi-precision coaxial RF connectors developed in the 1960s as a minimal connector interface for coaxial cable with a screw-type coupling mechanism. The connector has a 50 Ω impedance. SMA was originally designed for use from DC (0 Hz) to 12 GHz, however this has been extended over time and variants are available to 18 GHz and 26.5 GHz. There are also mechanically compatible connectors such as the K-connector which operate up to 40 GHz. The SMA connector is most commonly used in microwave systems, hand-held radio and mobile telephone antennas and, more recently, with WiFi antenna systems and USB software-defined radio dongles. It is also commonly used in radio astronomy, particularly at higher frequencies (5 GHz+).

<span class="mw-page-title-main">Diplexer</span>

A diplexer is a passive device that implements frequency-domain multiplexing. Two ports are multiplexed onto a third port. The signals on ports L and H occupy disjoint frequency bands. Consequently, the signals on L and H can coexist on port S without interfering with each other.

<span class="mw-page-title-main">UHF connector</span> Type of radio frequency connector

The UHF connector is a name for a threaded RF connector. The connector design was invented in the 1930s for use in the radio industry, and is a shielded form of the "banana plug". It is a widely used standard connector for HF transmission lines on full-sized radio equipment, with BNC connectors predominating for smaller, hand-held equipment.

<span class="mw-page-title-main">Belling-Lee connector</span> Coaxial RF connector used for television

The Belling-Lee connector is commonly used in Europe, parts of Southeast Asia, and Australia, to connect coaxial cables with each other and with terrestrial VHF/UHF roof antennas, antenna signal amplifiers, CATV distribution equipment, TV sets, and FM and DAB radio receivers. In these countries, it is known colloquially as a PAL antenna connector, IEC antenna connector, or simply as a TV aerial plug. It is one of the oldest coaxial connectors still commonly used in consumer devices. For television signals, the convention is that the source has a male connector and the receptor has a female connector. For FM radio signals, the convention is that the source has a female connector and the receptor has a male connector. This is more or less universally adopted with TV signals, while it is not uncommon for FM radio receivers to deviate from this, especially FM radio receivers from companies not based in the areas that use this kind of connector.

A radio transmitter or receiver is connected to an antenna which emits or receives the radio waves. The antenna feed system or antenna feed is the cable or conductor, and other associated equipment, which connects the transmitter or receiver with the antenna and makes the two devices compatible. In a radio transmitter, the transmitter generates an alternating current of radio frequency, and the feed system feeds the current to the antenna, which converts the power in the current to radio waves. In a radio receiver, the incoming radio waves excite tiny alternating currents in the antenna, and the feed system delivers this current to the receiver, which processes the signal.

A bias tee is a three-port network used for setting the DC bias point of some electronic components without disturbing other components. The bias tee is a diplexer. The low-frequency port is used to set the bias; the high-frequency port passes the radio-frequency signals but blocks the biasing levels; the combined port connects to the device, which sees both the bias and RF. It is called a tee because the 3 ports are often arranged in the shape of a T.

<span class="mw-page-title-main">Single-cable distribution</span>

Single-cable distribution is a satellite TV technology that enables the delivery of broadcast programming to multiple users over a single coaxial cable, and eliminates the numerous cables required to support consumer electronics devices such as twin-tuner digital video recorders (DVRs) and high-end receivers.

<span class="mw-page-title-main">Satellite television</span> Broadcasting of television using artificial satellites

Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.

Ethernet over Coax (EoC) is a family of technologies that supports the transmission of Ethernet frames over coaxial cable. The Institute of Electrical and Electronics Engineers (IEEE) maintains all official Ethernet standards in the IEEE 802 family.

<span class="mw-page-title-main">Fibre satellite distribution</span> Distribution of TV signals using optical fibre

Fibre satellite distribution is a technology that enables satellite TV signals from an antenna to be distributed using an optical fibre cable infrastructure and then converted to electrical signals for use with conventional set-top box receivers.

<span class="mw-page-title-main">7/16 DIN connector</span>

The 7-16 DIN connector or 7/16 is a 50 Ω threaded RF connector used to join coaxial cables. It was designed to reduce passive intermodulation from multiple transmitters. It is among the most widely used high power RF connectors in cellular network antenna systems. Originally popular in Europe, it has gained widespread use in the US and elsewhere.

<span class="mw-page-title-main">4.3-10 connector</span>

The 4.3-10 connector is a 50 Ω multi-purpose RF connector used to connect coaxial cables with other cables or RF devices, such as transmitters or antennas.

References

  1. Electrical Connector. US Patent 3,537,065 by Eric Winston
  2. 1 2 "IEC 61169-24:2019: Radio-frequency connectors - Part 24: Sectional specification - Radio frequency coaxial connectors with screw coupling, typically for use in 75 Ω cable networks (type F)". 2019.
  3. "Dielectric Grease vs. Conductive Grease". www.w8ji.com.
  4. "Understanding lnb specifications" (PDF). SatCritics Technicals. 2002-11-15. Retrieved 2017-11-29.
  5. Cityfreq United States Scanner Frequencies, Phone Numbers, and IP Addresses.

Further reading