S-Video

Last updated

S-Video
SVideoConnector.jpg
A standard 4-pin S-Video male connector on a cable
Type Analog video connector
Production history
Designed 1987
General specifications
Hot pluggable Yes
External Yes
Video signal NTSC, PAL, or SECAM video
Pins 4, 7, or 9
Connector Mini-DIN connector
Pinout
MiniDIN-4 Connector Pinout.svg
Looking at the female connector.
Pin 1 GND Ground (Y)
Pin 2 GND Ground (C)
Pin 3 Y Intensity (Luminance)
Pin 4 C Color (Chrominance)
The shells should be connected together by an overall screen/shield. However, the shield is often absent in low-end cables, which can result in picture degradation.
Same connector as Apple Desktop Bus.

S-Video (also known as separate video, Y/C, and erroneously Super-Video) [1] is an analog video signal format that carries standard-definition video, typically at 525 lines or 625 lines. It encodes video luma and chrominance on two separate channels, achieving higher image quality than composite video which encodes all video information on one channel. It also eliminates several types of visual defects such as dot crawl which commonly occur with composite video. Although it improved over composite video, S-Video has lower color resolution than component video, which is encoded over three channels. [2]

Contents

The Atari 800 was the first to introduce separate Chroma/Luma output in late 1979. [3] However, S-Video did not get widely adopted until JVC's introduction of the S-VHS (Super-VHS) format in 1987, which is why it is sometimes incorrectly referred to as Super-Video. [4] Before the shift towards digital video the S-video format was widely used by consumers, but it was rarely used in professional studios where YPbPr or component was generally preferred. [5]

Background

Standard analog television signals go through several processing steps on their way to being broadcast, each of which discards information and lowers the quality of the resulting images.

The image is originally captured in RGB form and then processed into three signals known as YPbPr. The first of these signals is called Y, which is created from all three original signals based on a formula that produces an overall brightness of the image, or luma . This signal closely matches a traditional black and white television signal and the Y/C method of encoding was key to offering backward compatibility. Once the Y signal is produced, it is subtracted from the blue signal to produce Pb and from the red signal to produce Pr. To recover the original RGB information for display, the signals are mixed with the Y to produce the original blue and red, and then the sum of those is mixed with the Y to recover the green.

A signal with three components is no easier to broadcast than the original three-signal RGB, so additional processing is required. The first step is to combine the Pb and Pr to form the C signal, for chrominance. The phase and amplitude of the signal represent the two original signals. This signal is then bandwidth-limited to comply with requirements for broadcasting. The resulting Y and C signals are mixed together to produce composite video. To play back composite video, the Y and C signals must be separated, and this is difficult to do without adding artifacts.

Each of these steps is subject to deliberate or unavoidable loss of quality. To retain that quality in the final image, it is desirable to eliminate as many of the encoding/decoding steps as possible. S-Video is an approach to this problem. It eliminates the final mixing of C with Y and subsequent separation at playback time.

Signal

The S-video cable carries video using two synchronized signal and ground pairs, termed Y and C.

Y is the luma signal, which carries the luminance – or black-and-white – of the picture, including synchronization pulses.

C is the chroma signal, which carries the chrominance  – or coloring-in – of the picture. This signal contains two color-difference components.

The luminance signal carries horizontal and vertical sync pulses in the same way as a composite video signal.

In composite video, the signals co-exist on different frequencies. To achieve this, the luminance signal must be low-pass filtered, dulling the image. As S-Video maintains the two as separate signals, such detrimental low-pass filtering for luminance is unnecessary, although the chrominance signal still has limited bandwidth relative to component video.

Compared with component video, which carries the identical luminance signal but separates the color-difference signals into Cb/Pb and Cr/Pr, the color resolution of S-Video is limited by the modulation on a subcarrier frequency of either 3.58 megahertz (NTSC) or 4.43 megahertz (PAL). This difference is meaningless on home videotape systems, as the chrominance is already severely constrained by both VHS and Betamax.

Carrying the color information as one signal means that the color has to be encoded in some way, typically in accord with NTSC, PAL, or SECAM, depending on the applicable local standard.

Physical connectors

Atari 800

DIN-5 Diagram.svg

The Atari 800 introduced separate Chroma/Luma output in late 1979. The signals were put on pin 1 and 5 of a 5-pin 180-degree DIN connector socket. Atari did not sell a monitor for its 8-bit computer line, however. [3]

Commodore 64

DIN-8 Diagram.svg

The Commodore 64 released in 1982 (with the exception of the earliest revisions using a 5-pin video port) also offers separate chroma and luma signals using a different connector. Although Commodore Business Machines did not use the term S-Video as the standard did not formally exist until 1987, a simple adapter connects the computer's LCA (luma-chroma-audio) 8-pin DIN socket to a S-Video display, or an S-Video device to the Commodore 1702 monitor's LCA jacks. [6]

4-pin mini-DIN

MiniDIN-4 Diagram.svg

The four-pin mini-DIN connector is the most common of several S-Video connector types. The same mini-DIN connector is used in the Apple Desktop Bus for Macintosh computers. Desktop Bus can be used for S-Video in a pinch. [7] [8] [9] Other connector variants include seven-pin locking dub connectors used on many professional S-VHS machines, and dual Y and C BNC connectors, often used for S-Video patch panels. Early Y/C video monitors often used phono (RCA connector) that were switchable between Y/C and composite video input. Though the connectors are different, the Y/C signals for all types are compatible.

The mini-DIN pins, being weak, sometimes bend. This can result in the loss of color or other corruption (or loss) in the signal. A bent pin can be forced back into shape, but this carries the risk of the pin breaking off.

These plugs are usually made to be plug-compatible with S-video, and include optional features, such as component video using an adapter. They are not necessarily S-video, although they can be operated in that mode.

7-pin mini-DIN

7-pin plug diagram Pseudo miniDIN-7 Diagram.svg
7-pin plug diagram

Non-standard 7-pin mini-DIN connectors (termed 7P) are used in some computer equipment (PCs and Macs). A 7P socket accepts, and is pin compatible with, a standard 4-pin S-Video plug. [10] The three extra sockets may be used to supply composite (CVBS), an RGB or YPbPr video signal, or an I²C interface. The pinout usage varies among manufacturers. [10] [11] In some implementations, the remaining pin must be grounded to enable the composite output or disable the S-Video output.

Some Dell laptops have a digital audio output in a 7-pin socket. [12]

8-pin mini-DIN

MiniDIN-8 Diagram.svg The 8-pin mini-DIN connector is used in some ATI Radeon video cards [13]

9-pin Video In/Video Out

Pseudo miniDIN-9 Diagram.svg MiniDIN-9 Diagram.svg

9-pin connectors are used in graphics systems that feature the ability to input video as well as output it. [14] [15] Again, there is no standardization between manufacturers as to which pin does what, and there are two known variants of the connector in use. As can be seen from the diagram above, although the S-Video signals are available on the corresponding pins, neither variant of the connector will accept an unmodified 4-pin S-Video plug, though they can be made to fit by removing the key from the plug. In the latter case, it becomes all too easy to misalign the plug when inserting it with consequent damage to the small pins.

Comparison with SCART

S-video/composite adapter S-video-composite-adapter.svg
S-video/composite adapter

In many European countries, S-Video was less common because of the dominance of SCART connectors, which were present on televisions until the advent of HDMI. It is possible for a player to output S-Video over SCART, but televisions' SCART connectors are not always wired to accept it, and if not the display would show only a monochrome image. [16] In this case it is sometimes possible to modify the SCART adapter cable to allow full S-Video compatibility.

See also

Related Research Articles

<span class="mw-page-title-main">Chrominance</span> Colour in an image or video

Chrominance is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal. Chrominance is usually represented as two color-difference components: U = B′ − Y′ (blue − luma) and V = R′ − Y′ (red − luma). Each of these difference components may have scale factors and offsets applied to it, as specified by the applicable video standard.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analogue television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">SECAM</span> French analog color television system

SECAM, also written SÉCAM, is an analog color television system that was used in France, Russia and some other countries or territories of Europe and Africa. It was one of three major analog color television standards, the others being PAL and NTSC. Like PAL, a SECAM picture is also made up of 625 interlaced lines and is displayed at a rate of 25 frames per second. However, due to the way SECAM processes color information, it is not compatible with the German PAL video format standard. This page primarily discusses the SECAM colour encoding system. The articles on broadcast television systems and analog television further describe frame rates, image resolution, and audio modulation. SECAM video is composite video because the luminance and chrominance are transmitted together as one signal.

<span class="mw-page-title-main">SCART</span> 21-pin connector for audio-visual equipment

SCART is a French-originated standard and associated 21-pin connector for connecting audio-visual (AV) equipment. The name SCART comes from Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs, "Radio and Television Receiver Manufacturers' Association", the French organisation that created the connector in the mid-1970s. The related European standard EN 50049 has then been refined and published in 1978 by CENELEC, calling it péritelevision, but it is commonly called by the abbreviation péritel in French.

<span class="mw-page-title-main">Y′UV</span> Mathematical color model

Y′UV, also written YUV, is the color model found in the PAL analogue color TV standard. A color is described as a Y′ component (luma) and two chroma components U and V. The prime symbol (') denotes that the luma is calculated from gamma-corrected RGB input and that it is different from true luminance. Today, the term YUV is commonly used in the computer industry to describe colorspaces that are encoded using YCbCr.

<span class="mw-page-title-main">Composite video</span> Analog video signal format

Composite video is an analog video format that typically carries a 525 or 625 line signal on a single channel, unlike the higher-quality S-Video and the even higher-quality component video.

<span class="mw-page-title-main">RCA connector</span> Electrical connector used for analog audio and video

The RCA connector is a type of electrical connector commonly used to carry audio and video signals. The name RCA derives from the company Radio Corporation of America, which introduced the design in the 1930s. The connector’s male plug and female jack are called RCA plug and RCA jack.

A DVD player is a device that plays DVDs produced under both the DVD-Video and DVD-Audio technical standards, two different and incompatible standards. Some DVD players will also play audio CDs. DVD players are connected to a television to watch the DVD content, which could be a movie, a recorded TV show, or other content.

<span class="mw-page-title-main">Chroma subsampling</span> Practice of encoding images

Chroma subsampling is the practice of encoding images by implementing less resolution for chroma information than for luma information, taking advantage of the human visual system's lower acuity for color differences than for luminance.

<span class="mw-page-title-main">Component video</span> Video signal that has been split into component channels

Component video is an analog video signal that has been split into two or more component channels. In popular use, it refers to a type of component analog video (CAV) information that is transmitted or stored as three separate signals. Component video can be contrasted with composite video in which all the video information is combined into a single signal that is used in analog television. Like composite, component cables do not carry audio and are often paired with audio cables.

<span class="mw-page-title-main">D-subminiature</span> Type of electrical connector

The D-subminiature or D-sub is a common type of electrical connector. They are named for their characteristic D-shaped metal shield. When they were introduced, D-subs were among the smallest connectors used on computer systems.

<span class="mw-page-title-main">VGA connector</span> 15-pin video connector

The Video Graphics Array (VGA) connector is a standard connector used for computer video output. Originating with the 1987 IBM PS/2 and its VGA graphics system, the 15-pin connector went on to become ubiquitous on PCs, as well as many monitors, projectors and high-definition television sets.

<span class="mw-page-title-main">YPbPr</span> Color space used in video electronics

YPbPr or Y'PbPr, also written as YPBPR, is a color space used in video electronics, in particular in reference to component video cables. Like YCbCr, it is based on gamma corrected RGB primaries; the two are numerically equivalent but YPBPR is designed for use in analog systems while YCBCR is intended for digital video. The EOTF may be different from common sRGB EOTF and BT.1886 EOTF. Sync is carried on the Y channel and is a bi-level sync signal, but in HD formats a tri-level sync is used and is typically carried on all channels.

<span class="mw-page-title-main">Dot crawl</span>

Dot crawl is a visual defect of color analog video standards when signals are transmitted as composite video, as in terrestrial broadcast television. It consists of moving checkerboard patterns which appear along horizontal color transitions. It results from intermodulation or crosstalk between chrominance and luminance components of the signal, which are imperfectly multiplexed in the frequency domain.

<span class="mw-page-title-main">Composite monitor</span>

A composite monitor or composite video monitor is any analog video display that receives input in the form of an analog composite video signal to a defined specification. A composite video signal encodes all information on a single conductor; a composite cable has a single live conductor plus earth. Other equipment with display functionality includes monitors with more advanced interfaces and connectors giving a better picture, including analog VGA, and digital DVI, HDMI, and DisplayPort; and television (TV) receivers which are self-contained, receiving and displaying video RF broadcasts received with an internal tuner. Video monitors are used for displaying computer output, closed-circuit television and other applications requiring a two-dimensional monochrome or colour image.

In video, luma represents the brightness in an image. Luma is typically paired with chrominance. Luma represents the achromatic image, while the chroma components represent the color information. Converting R′G′B′ sources into luma and chroma allows for chroma subsampling: because human vision has finer spatial sensitivity to luminance differences than chromatic differences, video systems can store and transmit chromatic information at lower resolution, optimizing perceived detail at a particular bandwidth.

MUSE, commercially known as Hi-Vision was a Japanese analog high-definition television system, with design efforts going back to 1979.

<span class="mw-page-title-main">Video decoder</span>

A video decoder is an electronic circuit, often contained within a single integrated circuit chip, that converts base-band analog video signals to digital video. Video decoders commonly allow programmable control over video characteristics such as hue, contrast, and saturation. A video decoder performs the inverse function of a video encoder, which converts raw (uncompressed) digital video to analog video. Video decoders are commonly used in video capture devices and frame grabbers.

Audio connectors and video connectors are electrical or optical connectors for carrying audio or video signals. Audio interfaces or video interfaces define physical parameters and interpretation of signals. For digital audio and digital video, this can be thought of as defining the physical layer, data link layer, and most or all of the application layer. For analog audio and analog video these functions are all represented in a single signal specification like NTSC or the direct speaker-driving signal of analog audio.

<span class="mw-page-title-main">HDCI</span> Video conferencing connector interface

HDCI used in Polycom video conferencing systems. It uses a 60-Pin Low-force helix high-density connector interface.

References

  1. S-Video – Definition Archived 2016-03-01 at the Wayback Machine About.com
  2. Poynton, Charles (2002). Digital Video and HD: Algorithms and Interfaces (PDF) (First ed.). Morgan Kaufmann. p. 107. ISBN   1558607927.
  3. 1 2 Current, Michael. "Atari 8-bit FAQ" . Retrieved 2018-02-23.[ permanent dead link ]
  4. "Definition of S-VHS".
  5. Poynton, Charles (2002). Digital Video and HD: Algorithms and Interfaces (PDF) (First ed.). Morgan Kaufmann. p. 107. ISBN   1558607927.
  6. Murray, David (2018-05-11). Commodore History Part 3 - The Commodore 64 (complete). The 8-Bit Guy. YouTube. Event occurs at 9:38. Archived from the original on 2021-12-11. Retrieved 2018-05-12.
  7. "Macintosh: S-Video Port Confused with the ADB Port". Archived from the original on 2016-05-12. Retrieved 2015-04-27.
  8. Waggoner, Ben (2002). Compression for Great Digital Video: Power Tips, Techniques, and Common Sense. ISBN   9781578201112.
  9. Wootton, Cliff (28 April 2005). A Practical Guide to Video and Audio Compression: From Sprockets and Rasters to Macro Blocks. ISBN   9781136036101.
  10. 1 2 Keith Jack (2007). Video demystified: a handbook for the digital engineer. Newnes. ISBN   9780750678223.
  11. ATI Radeon 7 pin SVID pinout.
  12. Dell (2009). "S-Video to TV-Composite Cable and SPDIF Adapter for Dell Inspiron".
  13. Pinouts.Ru (2017). "ATI Radeon 8-pin audio / video VID IN connector pinout".
  14. ATI Radeon: Using Video in and Video out.
  15. "ATI Radeon 9 pin VIVO pinout".
  16. S-Video drama :(. camp0s.com