Inorganic feed phosphates (IFP) are inorganic salts of phosphoric acid. Inorganic feed phosphates are used to meet the phosphorus requirements for animal production: to ensure optimal growth, fertility and bone development. [1] [2]
The importance of phosphate (PO43−) is reflected in the number of metabolic processes in which phosphorus takes part. By far the greatest amount of phosphorus is used to maintain and support the skeleton. About 80% of an animal's phosphorus is located here, co-precipitated with calcium (Ca) in the form of hydroxy-apatite complex (Ca10(PO4).6(OH)2), where it acts not only as a support system but also as a reservoir of phosphorus. In the soft tissues, phosphorus is a major component of the cells, membranes and body fluids. It also plays an important role in the energy supply. In addition phosphorus acts as a buffer, is involved in phospholipids and fatty acids transfer and in the formation of amino acids as well as DNA and RNA. Therefore, phosphorus is indispensable for animals.
Phosphates occur widely in nature mostly as phosphate rock or fluorapatite. There are large deposits in Russia, USA, North Africa, and China, where they are obtained mostly by open cast mining. Over 85% is used in fertiliser production, and only less than 7% in feed phosphate production. Two types of deposits exist: of volcanic and of sedimentary origin.
These crude phosphates cannot be used by animals directly, but must be converted into a form which can be digested by the animal. In addition, the undesired impurities must be removed or lowered to an acceptable level. The starting point of industrial feed phosphate production is technically pure (ortho-) phosphoric acid (H3PO4), which is obtained from the apatite in a wet chemical process.
Example of phosphoric acid production Wet-process phosphoric acid is prepared by adding sulfuric acid (H2SO4) to apatite or tricalcium phosphate rock resulting in the following reaction: 3 H2SO4 + Ca3(PO4)2 + 6 H2O ↔ 2 H3PO4 + 3 CaSO4•2H2O Wet-process acid has to be purified by removing fluorine and other undesirable elements to produce feed-grade phosphoric acid. |
Depending on the process and on other mineral sources used, different types of inorganic feed phosphates can be produced. The majority of the inorganic feed phosphates used in the EU and worldwide are calcium phosphates in different forms (mono-, di- and monodi-calcium phosphates) but also magnesium phosphates, sodium phosphates and even ammonium phosphates are used in animal nutrition. The end-product quality depends on the treatment and production process. Due to different chemical compositions of the different feed phosphate sources, large differences do exist in their phosphorus availability for the different animal species. However phosphate from the same source, produced by the same process, using the same raw materials, shows consistent phosphorus availability, which can be measured in biological assays.
Example of a calcium feed phosphate production Phosphoric acid is neutralized by means of calcium oxide or calcium carbonate, or a mixture of them. Dicalcium phosphate: H3PO4 + CaO + H2O ↔ CaHPO4 + 2 H2O Monocalcium phosphate: 2H3PO4 + CaO + H2O ↔ Ca(H2PO4)2.H2O + H2O Or : Based on dicalcium phosphate Monocalcium phosphate: H3PO4 + CaHPO4 +2H2O ↔ Ca(H2PO4)2.H2O + H2O Depending on the used qualities[ clarification needed ] the resulting products are more or less pure di- or monocalcium phosphates. |
Consistent phosphorus availability relies on strict quality control during the process, to avoid degradation of orthophosphate into other unavailable phosphate forms. Impurities which are naturally occurring in the used raw materials must also be considered. But also feed hygiene and good manufacturing practices should be complied with at all stages.
All animals require phosphorus and for most production animals these requirements are well established. Normally a number of variable factors such as performance level and breed differences are taken into account. On top of this, a safety margin is added to this to deal with variations within one flock or herd. Dietary allowances at the end take into account the availability of phosphorus within the diet and meet the requirements through supplementation with inorganic feed phosphates.
In addition calcium and vitamin D levels must be optimized because phosphorus metabolism is closely linked to these and symptoms of deficiency can be intensified if appropriate quantities are not used.
Because of possible phosphorus deficiencies in farmed animals, phosphorus is supplied in the form of inorganic feed phosphates. Consequences of deficiencies are known and well documented. The initial effect is a fall in blood plasma levels, followed by withdrawal of calcium and phosphorus from the skeleton. Loss of appetite and reduced productivity are common in all animal species. A poor feed conversion efficiency and a lowered live weight gain are well-known production related indicators. Other deficiencies include reduced fertility in cattle, but also reduced milk yield (milk contains on average 1 g of P per kg), stiffness and in extreme cases even enlarged joints or deformed bones and lameness. Other well known symptoms are reduced egg yield in laying birds, and, in case of chicks, reduced hatchability, together with cage layer fatigue syndrome. Also for all species osteomalacia and reduced fertility are possible. All these symptoms are more or less irreversible, resulting in economic losses for the farmer.
The mechanisms of phosphorus digestion and metabolism differ substantially between ruminant and non-ruminant (monogastric) species. In pigs, most phosphorus is absorbed from the small intestine (jejunum and duodenum) in the form of orthophosphate, whose solubility is greatest. The phosphorus is then transported across the gut wall. The kidney plays the major regulatory role in controlling phosphorus levels: any excess is excreted primarily via the urine. In poultry available phosphorus solubilises[ clarification needed ] in the gizzard, where it becomes available for absorption also in the duodenum and jejunum.
In the digestive system of ruminants, micro-organisms in the rumen produce enzymes which break down and thereby make available phosphorus from plant material. Phosphorus from plant sources is therefore better suited to ruminants, but is still used to a lesser extent than phosphorus provided by inorganic sources. The ruminant's phosphorus requirements are dictated by the needs of the microbial population in the rumen, with the phosphorus being necessary for cellulose digestion and protein synthesis. The main source is phosphorus recycled by the saliva, a peculiarity of ruminants. Phosphorus is mainly absorbed in the small intestine, and homeostasis is achieved by excretion of phosphorus with the faeces.
The majority of the phosphorus in animal feeds originates from the vegetal feed materials to compose these feeds. However, up to 80% of the phosphorus present in vegetal feed materials is in the form of phytate. Unfortunately, and in contrast to ruminants, poultry and pigs lack the enzyme necessary to break down this phytate-phosphorus. Therefore, phosphorus digestibility of plant phosphorus varies between 6% and 50%, and it is assumed that at least two-thirds of the organic phosphorus in the diet is unavailable for pigs and poultry. That is why diets of high-producing[ clarification needed ] farm animals must be supplemented with high quality inorganic feed phosphates.
These phosphate issues in animal feeding require appropriate diets. These can be provided by, amongst other things, the use of highly digestible feed materials including high quality inorganic feed phosphates.
Phosphorus is a chemical element; it has symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Earth. It has a concentration in the Earth's crust of about 0.1%, less abundant than hydrogen but more than manganese. In minerals, phosphorus generally occurs as phosphate.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H3PO4.
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig's law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.
In biochemistry, medicine, and related sciences, inositol generally refers to myo-inositol, the most important stereoisomer of the chemical compound cyclohexane-1,2,3,4,5,6-hexol. Its formula is C6H12O6; the molecule has a ring of six carbon atoms, each with an hydrogen atom and a hydroxyl group (–OH). In myo-inositol, two of the hydroxyls, neither adjacent not opposite, lie above the respective hydrogens relative to the mean plane of the ring.
Phytic acid is a six-fold dihydrogenphosphate ester of inositol, also called inositol hexaphosphate, inositol hexakisphosphate (IP6) or inositol polyphosphate. At physiological pH, the phosphates are partially ionized, resulting in the phytate anion.
Organic fertilizers are fertilizers that are naturally produced. Fertilizers are materials that can be added to soil or plants, in order to provide nutrients and sustain growth. Typical organic fertilizers include all animal waste including meat processing waste, manure, slurry, and guano; plus plant based fertilizers such as compost; and biosolids. Inorganic "organic fertilizers" include minerals and ash. Organic refers to the Principles of Organic Agriculture, which determines whether a fertilizer can be used for commercial organic agriculture, not whether the fertilizer consists of organic compounds.
Dicalcium phosphate is the calcium phosphate with the formula CaHPO4 and its dihydrate. The "di" prefix in the common name arises because the formation of the HPO42– anion involves the removal of two protons from phosphoric acid, H3PO4. It is also known as dibasic calcium phosphate or calcium monohydrogen phosphate. Dicalcium phosphate is used as a food additive, it is found in some toothpastes as a polishing agent and is a biomaterial.
A phytase is any type of phosphatase enzyme that catalyzes the hydrolysis of phytic acid – an indigestible, organic form of phosphorus that is found in many plant tissues, especially in grains and oil seeds – and releases a usable form of inorganic phosphorus. While phytases have been found to occur in animals, plants, fungi and bacteria, phytases have been most commonly detected and characterized from fungi.
Natural growth promoters (NGPs) are feed additives for farm animals.
Osteophagy is the practice in which animals, usually herbivores, consume bones. Most vegetation around the world lacks sufficient amounts of phosphate. Phosphorus is an essential mineral for all animals, as it plays a major role in the formation of the skeletal system, and is necessary for many biological processes including: energy metabolism, protein synthesis, cell signaling, and lactation. Phosphate deficiencies can cause physiological side effects, especially pertaining to the reproductive system, as well as side effects of delayed growth and failure to regenerate new bone. The importance of having sufficient amounts of phosphorus further resides in the physiological importance of maintaining a proper phosphorus to calcium ratio. Having a Ca:P ratio of 2:1 is important for the absorption of these minerals, as deviations from this optimal ratio can inhibit their absorption. Dietary calcium and phosphorus ratio, along with vitamin D, regulates bone mineralization and turnover by affecting calcium and phosphorus transport and absorption in the intestine.
The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, as the main source of gaseous phosphorus, phosphine, is only produced in isolated and specific conditions. Therefore, the phosphorus cycle is primarily examined studying the movement of orthophosphate (PO4)3-, the form of phosphorus that is most commonly seen in the environment, through terrestrial and aquatic ecosystems.
Animal feed is food given to domestic animals, especially livestock, in the course of animal husbandry. There are two basic types: fodder and forage. Used alone, the word feed more often refers to fodder. Animal feed is an important input to animal agriculture, and is frequently the main cost of the raising or keeping of animals. Farms typically try to reduce cost for this food, by growing their own, grazing animals, or supplementing expensive feeds with substitutes, such as food waste like spent grain from beer brewing.
Chelates in animal feed is jargon for metalloorganic compounds added to animal feed. The compounds provide sources of various metals that improve the health or marketability of the animal. Typical metals salts are derived from cobalt, copper, iron, manganese, and zinc. The objective of supplementation with trace minerals is to avoid a variety of deficiency diseases. Trace minerals carry out key functions in relation to many metabolic processes, most notably as cofactors for enzymes and hormones, and are essential for optimum health, growth and productivity. For example, supplementary minerals help ensure good growth, bone development, feathering in birds, hoof, skin and hair quality in mammals, enzyme structure and functions, and appetite. Deficiency of trace minerals affect many metabolic processes and so may be manifested by different symptoms, such as poor growth and appetite, reproductive failures, impaired immune responses, and general ill-thrift. From the 1950s to the 1990s most trace mineral supplementation of animal diets was in the form of inorganic minerals, and these largely eradicated associated deficiency diseases in farm animals. The role in fertility and reproductive diseases of dairy cattle highlights that organic forms of Zn are retained better than inorganic sources and so may provide greater benefit in disease prevention, notably mastitis and lameness.
Animal nutrition focuses on the dietary nutrients needs of animals, primarily those in agriculture and food production, but also in zoos, aquariums, and wildlife management.
Meat and bone meal (MBM) is a product of the rendering industry. It is typically about 48–52% protein, 33–35% ash, 8–12% fat, and 4–7% water. It is primarily used in the formulation of animal feed to improve the amino acid profile of the feed. Feeding of MBM to cattle is thought to have been responsible for the spread of BSE ; therefore, in most parts of the world, MBM is no longer allowed in feed for ruminant animals. However, it is still used to feed monogastric animals.
A feed additive is an additive of extra nutrient or drug for livestock. Such additives include vitamins, amino acids, fatty acids, minerals, pharmaceutical, fungal products and steroidal compounds. The additives might impact feed presentation, hygiene, digestibility, or effect on intestinal health.
Manure is organic matter that is used as organic fertilizer in agriculture. Most manure consists of animal feces; other sources include compost and green manure. Manures contribute to the fertility of soil by adding organic matter and nutrients, such as nitrogen, that are utilised by bacteria, fungi and other organisms in the soil. Higher organisms then feed on the fungi and bacteria in a chain of life that comprises the soil food web.
Feed manufacturing refers to the process of producing animal feed from raw agricultural products. Fodder produced by manufacturing is formulated to meet specific animal nutrition requirements for different species of animals at different life stages. According to the American Feed Industry Association (AFIA), there are four basic steps:
As in the human practice of veganism, vegan dog foods are those formulated with the exclusion of ingredients that contain or were processed with any part of an animal, or any animal byproduct. Vegan dog food may incorporate the use of fruits, vegetables, cereals, legumes including soya, nuts, vegetable oils, as well as any other non-animal based foods.
β-propeller phytases (BPPs) are a group of enzymes (i.e. protein superfamily) with a round beta-propeller structure. BPPs are phytases, which means that they are able to remove (hydrolyze) phosphate groups from phytic acid and its phytate salts. Hydrolysis happens stepwise and usually ends in myo-inositol triphosphate product which has three phosphate groups still bound to it. The actual substrate of BPPs is calcium phytate and in order to hydrolyze it, BPPs must have Ca2+ ions bound to themselves. BPPs are the most widely found phytase superfamily in the environment and they are thought to have a major role in phytate-phosphorus cycling in soil and water. As their alternative name alkaline phytase suggests, BPPs work best in basic (or neutral) environment. Their pH optima is 6–9, which is unique among the phytases.