This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Nuclear weapons |
---|
Background |
Nuclear-armed states |
|
In nuclear strategy, a first strike or preemptive strike is a preemptive surprise attack employing overwhelming force. First strike capability is a country's ability to defeat another nuclear power by destroying its arsenal to the point where the attacking country can survive the weakened retaliation while the opposing side is left unable to continue war. The preferred methodology is to attack the opponent's strategic nuclear weapon facilities (missile silos, submarine bases, bomber airfields), command and control sites, and storage depots first. The strategy is called counterforce.
This article possibly contains original research .(March 2011) |
First-strike attack, the use of a nuclear first strike capability, was greatly feared during the Cold War between NATO and the Soviet Bloc. At various points, fear of a first strike attack existed on both sides. Misunderstood changes in posture and well understood changes in technology used by either side often led to speculation regarding the enemy's intentions.
In the aftermath of World War II, the leadership of the Soviet Union feared the United States would use its nuclear superiority to initiate a full-scale attack, as from 1945 to 1948 the U.S. was the only state possessing nuclear weapons and until the late 1960s preserved an overwhelming superiority. The USSR countered by rapidly developing their own nuclear weapons, surprising the US with their first test in 1949. In turn, the U.S. countered by developing the vastly more powerful thermonuclear weapon, testing their first hydrogen bomb in 1952 at Ivy Mike, but the USSR quickly countered by testing their own thermonuclear weapons, with a test in 1953 of a semi-thermonuclear weapon of the Sloika design, and in 1956, with the testing of Sakharov's Third Idea – equivalent to the Castle Bravo device. Meanwhile, tensions between the two nations rose as 1956 saw Soviet invasion of Hungary; the U.S. and European nations drew certain conclusions from that event, while in the U.S., a powerful social backlash was afoot, prompted by Senator Joseph McCarthy, the House Un-American Activities Committee, and Julius and Ethel Rosenberg, U.S. citizens executed in 1953 after conviction of espionage. This atmosphere was further inflamed by the 1957 launch of Sputnik, which led to fears of Communists attacking from outer space, as well as concerns that if the Soviets could launch a device into orbit, they could equally cause a device to re-enter the atmosphere and impact any part of the planet. John F. Kennedy capitalized on this situation by emphasizing the bomber gap and the missile gap, areas in which the Soviets were (inaccurately) perceived as leading the United States, while heated Soviet rhetoric added to political pressure. The 1960 U-2 incident, involving Francis Gary Powers, as well as the Berlin Crisis, along with the test of the Tsar Bomba, escalated tensions still further.
This escalating situation came to a head with the Cuban Missile Crisis of 1962. The arrival of Soviet missiles in Cuba was conducted by the Soviets on the rationale that the US already had nuclear missiles stationed in Turkey, as well as the desire by Fidel Castro to increase his power, his freedom of action, and to protect his government from US invasion, such as had been attempted during the Bay of Pigs Invasion in April 1961. During the crisis, Fidel Castro wrote Khrushchev a letter about the prospect that the "imperialists" would be "extremely dangerous" if they responded militarily to the Soviet stationing of nuclear missiles aimed at US territory, less than 90 miles away in Cuba. The following quotation from the letter suggests that Castro was calling for a Soviet first strike against the US if it responded militarily to the placement of nuclear missiles aimed at the US in Cuba:
If the second variant takes place and the imperialists invade Cuba with the aim of occupying it, the dangers of their aggressive policy are so great that after such an invasion the Soviet Union must never allow circumstances in which the imperialists could carry out a nuclear first strike against it. I tell you this because I believe that the imperialists' aggressiveness makes them extremely dangerous, and that if they manage to carry out an invasion of Cuba—a brutal act in violation of universal and moral law—then that would be the moment to eliminate this danger forever, in an act of the most legitimate self-defense. However harsh and terrible the solution, there would be no other. [1]
The Cuban Missile Crisis resulted in Nikita Khrushchev publicly agreeing to remove the missiles from Cuba, while John F. Kennedy secretly agreed to remove his country's missiles from Turkey. Both sides in the Cold War realized how close they came to nuclear war over Cuba, and decided to seek a reduction of tensions, resulting in US-Soviet détente for most of the 1960s and 1970s.
Nonetheless, this reduction of tensions only applied to the US and the USSR. Recently[ when? ] declassified interviews with high level former Soviet nuclear and military–industrial planners reveal that Fidel Castro continued to favour nuclear options, even during the later Cold War – according to former Soviet General Andrian Danilevich, "(...in the early 1980s...) Cuban leader Fidel Castro pressed the USSR to take a tougher line against the United States, including possible nuclear strikes. The Soviet Union, in response, sent experts to spell out for Castro the ecological consequences for Cuba of nuclear strikes on the United States. Castro, according to the general, quickly became convinced of the undesirability of such outcomes." [2]
However, tensions were inflamed again in the late 1970s and early 1980s with the Soviet invasion of Afghanistan, the Soviet deployment of the SS-20 Saber and the SS-18 Satan, and the decision of NATO to deploy the new Pershing II IRBM as well as the Tomahawk Ground Launched Cruise Missile, along with U.S. President Ronald Reagan's talk of 'limited' nuclear war. This increased Soviet fears that NATO was planning an attack. NATO's deployment of these missiles was a response to the Soviet deployment of the SS-20 Saber, which could hit most European NATO bases within minutes of launch. These mutual deployments led to a destabilizing strategic situation, which was exacerbated by malfunctioning U.S. and Soviet missile launch early warning systems, a Soviet intelligence gap that prevented the Soviets from getting a "read" on the strategic intentions of U.S. leaders, as well as inflammatory U.S. rhetoric combined with classical Soviet mistrust of the NATO powers. This culminated in a war scare that occurred during 1983 due to the inopportune timing of a NATO exercise called Able Archer, which was a simulation of a NATO nuclear attack on the Soviet Union; this exercise happened to occur during a massive Soviet intelligence mobilization called VRYAN, that was designed to discover intentions of NATO to initiate a nuclear first-strike. This poor timing drove the world very close to nuclear war, possibly even closer than the Cuban Missile Crisis over 20 years before.[ citation needed ]
Because of the low accuracy (large circular error probable) of early generation intercontinental ballistic missiles (and especially submarine-launched ballistic missiles), counterforce strikes were initially only possible against very large, undefended targets like bomber airfields and naval bases. Later generation missiles with much improved accuracy made counterforce attacks against the opponent's hardened military facilities (like missile silos and command and control centers) possible. This is due to the inverse-square law, which predicts that the amount of energy dispersed from a single point release of energy (such as a thermonuclear blast) dissipates by the inverse of the square of distance from the single point of release. The result is that the power of a nuclear explosion to rupture hardened structures is greatly decreased by the distance from the impact point of the nuclear weapon. So a near-direct hit is generally necessary, as only diminishing returns are gained by increasing bomb power.
Any missile defense system capable of wide-area (e.g., continental) coverage, and especially those enabling destruction of missiles in the boost phase, is a first-strike-enabling weapon because it allows for a nuclear strike to be launched with reduced fear of mutual assured destruction. Such a system has never been deployed, although a limited continental missile defense capability has been deployed by the U.S., but it is capable of defending against only a handful of missiles.
This does not apply, in general, to terminal missile defense systems, such as the former U.S. Safeguard Program or the Russian A-35/A-135 systems. Limited-area terminal missile defense systems, defending such targets as ICBM fields, or C4ISTAR facilities may, in fact, be stabilizing, because they ensure survivable retaliatory capacity, and/or survivable de-escalation capacity.
This also might not apply to a "non-discriminatory" space-based missile defense system, even if it is—actually, precisely because it is—of global reach. Such a system would be designed to destroy all weapons launched by any nation in a ballistic trajectory, negating any nation's capability to launch any strike with ballistic missiles, assuming the system was sufficiently robust to repel attacks from all potential threats, and built to open standards openly agreed upon and adhered to. No such system has yet been seriously proposed.
According to the theories of nuclear deterrence and mutual assured destruction, full countervalue retaliation would be the likely fate for any state that unleashed a first strike. To maintain credible deterrence, nuclear-weapons states have taken measures to give their enemies reason to believe that a first strike would lead to unacceptable results.
The main strategy relies on creating doubt among enemy strategists regarding nuclear capacity, weapons characteristics, facility and infrastructure vulnerability, early warning systems, intelligence penetration, strategic plans, and political will. In terms of military capabilities, the aim is to create the impression of the maximum possible force and survivability, which leads the enemy to make increased estimates of the probability of a disabling counterstrike, and in terms of strategy and politics, the aim is to cause the enemy to believe that such a second strike would be forthcoming in the event of a nuclear attack.
One of the main reasons to deter a first strike is the possibility of the victim of the first-strike launching a retaliatory second strike on the attacker.
Nuclear-powered ballistic missile submarines (SSBNs) carrying submarine-launched ballistic missiles (SLBMs), commonly known as "boomers" in the US and "bombers" in the UK, are widely considered the most survivable component of the nuclear triad. The depths of the ocean are extremely large, and nuclear submarines are highly mobile, are very quiet, have virtually unlimited range, and can generate their own oxygen and potable water. In essence, their undersea endurance is limited only by food supply. It is unlikely that any conceivable opponent of any nuclear power deploying ballistic missile submarines can locate and neutralize every ballistic missile submarine before it launches a retaliatory strike in the event of war. Therefore, to increase the percentage of nuclear forces surviving a first strike, a nation can simply increase SSBN deployment and the deployment of reliable communications links with SSBNs.
In addition, land-based ICBM silos can be hardened. No missile launch facility can really defend against a direct nuclear hit, but a sufficiently hardened silo could defend against a near miss, especially if the detonation is not from a multimegaton thermonuclear weapon. In addition, ICBMs can be placed on road or rail-mobile launchers (RT-23 Molodets, RT-2PM2 Topol-M, DF-31, Agni 5, Agni 6, MGM-134 Midgetman), which can then be moved around. As an enemy has nothing fixed at which to aim, that increases its survivability.
The effectiveness of a first strike is contingent upon the aggressor's ability to deplete its enemy's retaliatory capacity immediately to a level that would make a second strike impossible, mitigable, or strategically undesirable. Intelligence and early warning systems increase the probability that the enemy has the time to launch its own strike before its warmaking capacity has been significantly reduced, which renders a first strike pointless. Alert states such as DEFCON conditions, apart from serving a purpose in the internal management of a country's military, can have the effect of advising a potential aggressor that an escalation towards first strike has been detected and therefore that effective retaliatory strikes could be made in the event of an attack.
Looking Glass, Nightwatch, and TACAMO are US airborne nuclear command posts and represent survivable communication links with US nuclear forces. In the event of significant political-military tensions between the nuclear powers, they would take to the skies and provide survivable communications in the event of enemy attack. They are capable of the full exercise of all available MAOs (Major Attack Options), as well as the full SIOP, in the event of a first strike or the destruction of the NCA. They can directly initiate launch of all American ICBMs via radio and satellite communication, signal SLBMs to launch and send bombers on their strike missions. In addition to those airborne assets, the US government has several command and control bunkers, the most famous of which is that of NORAD, which is tunneled a few thousand feet into the granite of Cheyenne Mountain Complex, outside Colorado Springs, Colorado. It is believed to be able to withstand and to continue to operate after a nuclear direct hit. Other US C4ISTAR bunkers include an installation called Site R, located at Raven Rock, Pennsylvania, which is believed to be the Pentagon's relocation site if Washington, DC, is destroyed, as well as Mount Weather, located in Virginia, which is believed to be the relocation site for top executive branch officials. The Greenbrier, located in West Virginia, was once the site of the Supreme Court of the United States and Congress's relocation bunker, but it is no longer a secret but is now a tourist attraction.
The Russians have a system called SPRN (СПРН), which can detect nuclear launches and providing early warning so that any such strike would not be undetected until it is too late. However, their unique and special capability can be found with their Dead Hand fail-deadly computerized nuclear release system, [3] which is based at Kosvinsky Kamen in the Urals. Apparently, Dead Hand, named for either the dead man's hand in poker or the dead man's switch in dangerous or deadly machinery, can be turned on whenever the Russian leadership fears a nuclear attack. Allegedly, once Dead Hand is activated, if it detects a loss of communications with Moscow as well as nuclear detonations inside Russian territory, it can give final authority for the release of nuclear weapons to military officers in a bunker under Kosvinsky Kamen, who can then, if they so determine, launch Russia's arsenal.
Instead of relying on sophisticated communications links and launch-on-warning postures, the French, the British, and the Chinese have chosen to assume different nuclear postures more suited to minimum credible deterrence or the capability to inflict unacceptable losses to prevent the use of nuclear weapons against them, rather than pursuing types of nuclear weapons suitable to first-strike use.[ citation needed ]
China is believed to pursue a minimum credible deterrent/second strike strategy with regards to the US. That may or may not be true with regards to China's stance with regard to Russia, as few Chinese nuclear platforms are intercontinental, and most of the platforms are deployed on the Russian-Chinese border. Unlike relations of the US and China, Russia and China have had military conflicts in the past. In recent years, China has improved its early warning systems and has renovated certain of its platforms for intercontinental strike, which may or may not be due to the US missile defense system. In general, it appears[ according to whom? ] that China's leaders do not greatly fear a first strike, because of their posture of inflicting unacceptable losses upon an adversary, as opposed to the American and Russian policy of trying to "win" a nuclear war. The Chinese arsenal is considered to suffice in ensuring that such a first strike would not go unavenged.
The United Kingdom and France have sophisticated nuclear weapons platforms, and their nuclear strategies are minimum credible deterrent-based. Both have ballistic missile submarines, armed with intercontinental submarine-launched ballistic missiles, to ensure a second-strike retaliation anywhere in the world. France also has a number of nuclear capable fighter aircraft. Both have nuclear policies that are believed to be effective deterrence towards a would-be nuclear strike against themselves, NATO, European Union members, and other allies.
MIRVed land-based ICBMs are generally considered suitable for a first strike or a counterforce strike, due to:
Unlike a decapitation strike or a countervalue strike, a counterforce strike might result in a potentially more constrained retaliation. Though the Minuteman III of the mid-1960s was MIRVed with 3 warheads, heavily MIRVed vehicles threatened to upset the balance; these included the SS-18 Satan which was deployed in 1976, and was considered to threaten Minuteman III silos, which led some neoconservatives ("Team B") to conclude a Soviet first strike was being prepared for. This led to the development of the aforementioned Pershing II, the Trident I and Trident II, as well as the MX missile, and the B-1 Lancer.
MIRVed land-based ICBMs are considered destabilizing because they tend to put a premium on striking first. When a missile is MIRVed, it is able to carry many warheads (up to 8 in existing U.S. missiles, limited by New START, though Trident II is capable of carrying up to 12 [4] ) and deliver them to separate targets. If it is assumed that each side has 100 missiles, with 5 warheads each, and further that each side has a 95 percent chance of neutralizing the opponent's missiles in their silos by firing 2 warheads at each silo, then the attacking side can reduce the enemy ICBM force from 100 missiles to about 5 by firing 40 missiles with 200 warheads, and keeping the rest of 60 missiles in reserve. As such, this type of weapon was intended to be banned under the START II agreement, however the START II agreement was never activated, and neither Russia nor the US has adhered to the agreement.
Any defense system against nuclear missiles such as SDI will be more effective against limited numbers of missiles launched. At very small numbers of targets, each defensive asset will be able to take multiple shots at each warhead, and a high kill ratio could be achieved easily. As the number of targets increases, the defensive network becomes "saturated" as each asset must target and destroy more and more warheads in the same window of time. Eventually the system will reach a maximum number of targets destroyed and after this point all additional warheads will penetrate the defenses. This leads to several destabilizing effects.
First, a state that is not building similar defenses may be encouraged to attack before the system is in place, essentially starting the war while there is no clear advantage instead of waiting until they will be at a distinct disadvantage after the defenses are completed. Second, one of the easiest ways to counter any proposed defenses is to simply build more warheads and missiles, reaching that saturation point sooner and hitting targets through a strategy of attrition. Third, and most importantly, since defenses are more effective against small numbers of warheads, a nation with a defense system is actually encouraged to engage in a counterforce first strike. The smaller retaliatory strike is then more easily destroyed by the defense system than a full attack would be. This undermines the doctrine of MAD by discrediting a nation's ability to punish any aggressor with a lethal retaliatory second strike.
An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery. Conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicle (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. The United States, Russia, China, France, India, the United Kingdom, Israel, and North Korea are the only countries known to have operational ICBMs. Pakistan is the only nuclear-armed state that does not possess ICBMs.
The UGM-27 Polaris missile was a two-stage solid-fueled nuclear-armed submarine-launched ballistic missile (SLBM). As the United States Navy's first SLBM, it served from 1961 to 1980.
Mutual assured destruction (MAD) is a doctrine of military strategy and national security policy which posits that a full-scale use of nuclear weapons by an attacker on a nuclear-armed defender with second-strike capabilities would result in the complete annihilation of both the attacker and the defender. It is based on the theory of rational deterrence, which holds that the threat of using strong weapons against the enemy prevents the enemy's use of those same weapons. The strategy is a form of Nash equilibrium in which, once armed, neither side has any incentive to initiate a conflict or to disarm.
The LGM-30 Minuteman is an American land-based intercontinental ballistic missile (ICBM) in service with the Air Force Global Strike Command. As of 2024, the LGM-30G is the only land-based ICBM in service in the United States and represents the land leg of the U.S. nuclear triad, along with the Trident II submarine-launched ballistic missile (SLBM) and nuclear weapons carried by long-range strategic bombers.
Nuclear utilization target selection (NUTS) is a hypothesis regarding the use of nuclear weapons often contrasted with mutually assured destruction (MAD). NUTS theory at its most basic level asserts that it is possible for a limited nuclear exchange to occur and that nuclear weapons are simply one more rung on the ladder of escalation pioneered by Herman Kahn. This leads to a number of other conclusions regarding the potential uses of and responses to nuclear weapons.
A multiple independently targetable reentry vehicle (MIRV) is an exoatmospheric ballistic missile payload containing several warheads, each capable of being aimed to hit a different target. The concept is almost invariably associated with intercontinental ballistic missiles carrying thermonuclear warheads, even if not strictly being limited to them. An intermediate case is the multiple reentry vehicle (MRV) missile which carries several warheads which are dispersed but not individually aimed. All nuclear-weapon states except Pakistan and North Korea are currently confirmed to have deployed MIRV missile systems.
A submarine-launched ballistic missile (SLBM) is a ballistic missile capable of being launched from submarines. Modern variants usually deliver multiple independently targetable reentry vehicles (MIRVs), each of which carries a nuclear warhead and allows a single launched missile to strike several targets. Submarine-launched ballistic missiles operate in a different way from submarine-launched cruise missiles.
The LGM-118 Peacekeeper, originally known as the MX for "Missile, Experimental", was a MIRV-capable intercontinental ballistic missile (ICBM) produced and deployed by the United States from 1986 to 2005. The missile could carry up to eleven Mark 21 reentry vehicles, each armed with a 300-kiloton W87 warhead. Initial plans called for building and deploying 100 MX ICBMs, but budgetary concerns limited the final procurement; only 50 entered service. Disarmament treaties signed after the Peacekeeper's development led to its withdrawal from service in 2005.
The UGM-133A Trident II, or Trident D5 is a submarine-launched ballistic missile (SLBM), built by Lockheed Martin Space in Sunnyvale, California, and deployed with the United States and Royal Navy. It was first deployed in March 1990, and remains in service. The Trident II Strategic Weapons System is an improved SLBM with greater accuracy, payload, and range than the earlier Trident C-4. It is a key element of the U.S. strategic nuclear triad and strengthens U.S. strategic deterrence. The Trident II is considered to be a durable sea-based system capable of engaging many targets. It has payload flexibility that can accommodate various treaty requirements, such as New START. The Trident II's increased payload allows nuclear deterrence to be accomplished with fewer submarines, and its high accuracy—approaching that of land-based missiles—enables it to be used as a first strike weapon.
A Fractional Orbital Bombardment System (FOBS) is a warhead delivery system that uses a low Earth orbit towards its target destination. Just before reaching the target, it deorbits through a retrograde engine burn.
The R-36 is a family of intercontinental ballistic missiles (ICBMs) and space launch vehicles (Tsyklon) designed by the Soviet Union during the Cold War. The original R-36 was deployed under the GRAU index 8K67 and was given the NATO reporting name SS-9 Scarp. It was able to carry three warheads and was the first Soviet MRV missile. The later version, the R-36M, also known as RS20, was produced under the GRAU designations 15A14 and 15A18 and was given the NATO reporting name SS-18 Satan. This missile was viewed by certain United States analysts as giving the Soviet Union first strike advantage over the U.S., particularly because of its rapid silo-reload ability, very heavy throw weight and extremely large number of re-entry vehicles. Some versions of the R-36M were deployed with 10 warheads and up to 40 penetration aids and the missile's high throw-weight made it theoretically capable of carrying more warheads or penetration aids. Contemporary U.S. missiles, such as the Minuteman III, carried up to three warheads at most.
In nuclear strategy, a retaliatory strike or second-strike capability is a country's assured ability to respond to a nuclear attack with powerful nuclear retaliation against the attacker. To have such an ability is considered vital in nuclear deterrence, as otherwise the other side might attempt to try to win a nuclear war in one massive first strike against its opponent's own nuclear forces.
Nuclear weapons delivery is the technology and systems used to place a nuclear weapon at the position of detonation, on or near its target. Several methods have been developed to carry out this task.
A nuclear triad is a three-pronged military force structure of land-based intercontinental ballistic missiles (ICBMs), submarine-launched ballistic missiles (SLBMs), and strategic bombers with nuclear bombs and missiles. Countries build nuclear triads to eliminate an enemy's ability to destroy a nation's nuclear forces in a first-strike attack, which preserves their own ability to launch a second strike and therefore increases their nuclear deterrence.
A strategic nuclear weapon (SNW) is a nuclear weapon that is designed to be used on targets often in settled territory far from the battlefield as part of a strategic plan, such as military bases, military command centers, arms industries, transportation, economic, and energy infrastructure, and countervalue targets such areas such as cities and towns. It is in contrast to a tactical nuclear weapon, which is designed for use in battle as part of an attack with and often near friendly conventional forces, possibly on contested friendly territory. As of 2024, strategic nuclear weapons have been used twice in the 1945 United States bombings of Hiroshima and Nagasaki.
In nuclear strategy, a counterforce target is one that has a military value, such as a launch silo for intercontinental ballistic missiles, an airbase at which nuclear-armed bombers are stationed, a homeport for ballistic missile submarines, or a command and control installation.
STRAT-X, or Strategic-Experimental, was a U.S. government-sponsored study conducted during 1966 and 1967 that comprehensively analyzed the potential future of the U.S. nuclear deterrent force. At the time, the Soviet Union was making significant strides in nuclear weapons delivery, and also constructing anti-ballistic missile defenses to protect strategic facilities. To address a potential technological gap between the two superpowers, U.S. Secretary of Defense Robert McNamara entrusted the classified STRAT-X study to the Institute for Defense Analyses, which compiled a twenty-volume report in nine months. The report looked into more than one hundred different weapons systems, ultimately resulting in the MGM-134 Midgetman and LGM-118 Peacekeeper intercontinental ballistic missiles, the Ohio-class submarines, and the Trident submarine-launched ballistic missiles, among others. Journalists have regarded STRAT-X as a major influence on the course of U.S. nuclear policy.
Sentry, known for most of its lifetime as LoADS for Low Altitude Defense System, was a short-range anti-ballistic missile (ABM) design made by the US Army during the 1970s. It was proposed as a defensive weapon that would be used in concert with the MX missile, a US Air Force ICBM that was under development.
Dust defense, sometimes called environmental defense, was a proposed anti-ballistic missile (ABM) system considered for protecting both Minuteman and MX Peacekeeper missile silos from Soviet attack.
{{cite web}}
: CS1 maint: multiple names: authors list (link)