It has been suggested that this article be merged into Yuktibhāṣā . (Discuss) Proposed since May 2022. |
Ganita-yukti-bhasa (also written as Ganita Yuktibhasa) is either the title or a part of the title of either:
This edition of Yuktibhasa has been divided into two volumes, even though the original Malayalam text has no such division. Volume I deals with mathematics and Volume II treats astronomy. Each volume is divided into three parts: First part is an English translation of the relevant Malayalam part of Yuktibhasa, second part contains detailed explanatory notes on the translation, and in the third part the text in the Malayalam original is reproduced. The English translation is by K.V. Sarma and the explanatory notes are provided by Ramasubramanian, K., Srinivas, M.D. and Sriram, M.S..
Volume I dealing with mathematics is divided into seven chapters. The topics discussed are the eight mathematical operations, a certain set of ten problems, arithmetic of fractions, rule of three, Kuttakara (linear indeterminate equations), infinite series and approximations for the ratio of the circumference and diameter of a circle and infinite series and approximations for sines. [7]
Volume II dealing with astronomy is divided into eight chapters. The topics covered are computation of mean and true longitudes of planets, Earth and celestial spheres, fifteen problems relating to ascension, declination, longitude, etc., determination of time, place, direction, etc., from gnomonic shadow, eclipses, Vyatipata (when the sun and moon have the same declination), visibility correction for planets and phases of the moon. [7]
Keļallur Nilakantha Somayaji, also referred to as Keļallur Comatiri, was a major mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehensive astronomical treatise Tantrasamgraha completed in 1501. He had also composed an elaborate commentary on Aryabhatiya called the Aryabhatiya Bhasya. In this Bhasya, Nilakantha had discussed infinite series expansions of trigonometric functions and problems of algebra and spherical geometry. Grahapariksakrama is a manual on making observations in astronomy based on instruments of the time. Known popularly as Kelallur Chomaathiri, he is considered an equal to Vatasseri Parameshwaran Nambudiri.
Vatasseri Parameshvara Nambudiri was a major Indian mathematician and astronomer of the Kerala school of astronomy and mathematics founded by Madhava of Sangamagrama. He was also an astrologer. Parameshvara was a proponent of observational astronomy in medieval India and he himself had made a series of eclipse observations to verify the accuracy of the computational methods then in use. Based on his eclipse observations, Parameshvara proposed several corrections to the astronomical parameters which had been in use since the times of Aryabhata. The computational scheme based on the revised set of parameters has come to be known as the Drgganita or Drig system. Parameshvara was also a prolific writer on matters relating to astronomy. At least 25 manuscripts have been identified as being authored by Parameshvara.
Paṇḍita Jagannātha Samrāṭ (1652–1744) was an Indian astronomer and mathematician who served in the court of Jai Singh II of Amber, and was also his guru.
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics, important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.
Iriññāttappiḷḷi Mādhavan Nampūtiri known as Mādhava of Sangamagrāma was an Indian mathematician and astronomer from the town believed to be present-day Kallettumkara, Aloor Panchayath, Irinjalakuda in Thrissur District, Kerala, India. He is considered the founder of the Kerala school of astronomy and mathematics. One of the greatest mathematician-astronomers of the Middle Ages, Madhava made pioneering contributions to the study of infinite series, calculus, trigonometry, geometry, and algebra. He was the first to use infinite series approximations for a range of trigonometric functions, which has been called the "decisive step onward from the finite procedures of ancient mathematics to treat their limit-passage to infinity".
Jyeṣṭhadeva was an astronomer-mathematician of the Kerala school of astronomy and mathematics founded by Madhava of Sangamagrama. He is best known as the author of Yuktibhāṣā, a commentary in Malayalam of Tantrasamgraha by Nilakantha Somayaji (1444–1544). In Yuktibhāṣā, Jyeṣṭhadeva had given complete proofs and rationale of the statements in Tantrasamgraha. This was unusual for traditional Indian mathematicians of the time. The Yuktibhāṣā is now believed to contain the essential elements of the calculus and one of the earliest treatise on the subject. Jyeṣṭhadeva also authored Drk-karana a treatise on astronomical observations.
The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India which included among its members: Parameshvara, Neelakanta Somayaji, Jyeshtadeva, Achyuta Pisharati, Melpathur Narayana Bhattathiri and Achyuta Panikkar. The school flourished between the 14th and 16th centuries and the original discoveries of the school seems to have ended with Narayana Bhattathiri (1559–1632). In attempting to solve astronomical problems, the Kerala school independently discovered a number of important mathematical concepts. Their most important results—series expansion for trigonometric functions—were described in Sanskrit verse in a book by Neelakanta called Tantrasangraha, and again in a commentary on this work, called Tantrasangraha-vakhya, of unknown authorship. The theorems were stated without proof, but proofs for the series for sine, cosine, and inverse tangent were provided a century later in the work Yuktibhasa, written in Malayalam, by Jyesthadeva, and also in a commentary on Tantrasangraha.
Yuktibhāṣā, also known as Gaṇitanyāyasaṅgraha, is a major treatise on mathematics and astronomy, written by the Indian astronomer Jyesthadeva of the Kerala school of mathematics around 1530. The treatise, written in Malayalam, is a consolidation of the discoveries by Madhava of Sangamagrama, Nilakantha Somayaji, Parameshvara, Jyeshtadeva, Achyuta Pisharati, and other astronomer-mathematicians of the Kerala school.
Tantrasamgraha, or Tantrasangraha, is an important astronomical treatise written by Nilakantha Somayaji, an astronomer/mathematician belonging to the Kerala school of astronomy and mathematics. The treatise was completed in 1501 CE. It consists of 432 verses in Sanskrit divided into eight chapters. Tantrasamgraha had spawned a few commentaries: Tantrasamgraha-vyakhya of anonymous authorship and Yuktibhāṣā authored by Jyeshtadeva in about 1550 CE. Tantrasangraha, together with its commentaries, bring forth the depths of the mathematical accomplishments the Kerala school of astronomy and mathematics, in particular the achievements of the remarkable mathematician of the school Sangamagrama Madhava. In his Tantrasangraha, Nilakantha revised Aryabhata's model for the planets Mercury and Venus. His equation of the centre for these planets remained the most accurate until the time of Johannes Kepler in the 17th century.
Puthumana Somayaji (c.1660–1740) was a 17th-century astronomer-mathematician from Kerala, India. He was born into the Puthumana or Puthuvana family of Sivapuram. The most famous work attributed to Puthumana Somayaji is Karanapaddhati which is a comprehensive treatise on Astronomy.
Gregory's series, is an infinite Taylor series expansion of the inverse tangent function. It was discovered in 1668 by James Gregory. It was re-rediscovered a few years later by Gottfried Leibniz, who re obtained the Leibniz formula for π as the special case x = 1 of the Gregory series.
K. V. Venkateswara Sarma (1919–2005) was an Indian historian of science, particularly the astronomy and mathematics of the Kerala school. He was responsible for bringing to light several of the achievements of the Kerala school. He was editor of the Vishveshvaranand Indological Research Series, and published the critical edition of several source works in Sanskrit, including the Aryabhatiya of Aryabhata. He was recognised as "the greatest authority on Kerala's astronomical tradition".
Karanapaddhati is an astronomical treatise in Sanskrit attributed to Puthumana Somayaji, an astronomer-mathematician of the Kerala school of astronomy and mathematics. The period of composition of the work is uncertain. C.M. Whish, a civil servant of the East India Company, brought this work to the attention of European scholars for the first time in a paper published in 1834. The book is divided into ten chapters and is in the form of verses in Sanskrit. The sixth chapter contains series expansions for the value of the mathematical constant π, and expansions for the trigonometric sine, cosine and inverse tangent functions.
Shankara Variyar was an astronomer-mathematician of the Kerala school of astronomy and mathematics. His family were employed as temple-assistants in the temple at Tṛkkuṭaveli near modern Ottapalam.
In mathematics, a Madhava series or Leibniz series is any one of the series in a collection of infinite series expressions all of which are believed to have been discovered by an Indian Mathematician and Astronomer Madhava of Sangamagrama, the founder of the Kerala school of astronomy and mathematics and later by Gottfried Wilhelm Leibniz, among others. These expressions are the Maclaurin series expansions of the trigonometric sine, cosine and arctangent functions, and the special case of the power series expansion of the arctangent function yielding a formula for computing π. The power series expansions of sine and cosine functions are respectively called Madhava's sine series and Madhava's cosine series. The power series expansion of the arctangent function is sometimes called Madhava–Gregory series or Gregory–Madhava series. These power series are also collectively called Taylor–Madhava series. The formula for π is referred to as Madhava–Newton series or Madhava–Leibniz series or Leibniz formula for pi or Leibnitz–Gregory–Madhava series. These further names for the various series are reflective of the names of the Western discoverers or popularizers of the respective series.
Veṇvāroha is a work in Sanskrit composed by Mādhava of Sangamagrāma, the founder of the Kerala school of astronomy and mathematics. It is a work in 74 verses describing methods for the computation of the true positions of the Moon at intervals of about half an hour for various days in an anomalistic cycle. This work is an elaboration of an earlier and shorter work of Mādhava himself titled Sphutacandrāpti. Veṇvāroha is the most popular astronomical work of Mādhava.
Kriyakramakari (Kriyā-kramakarī) is an elaborate commentary in Sanskrit written by Sankara Variar and Narayana, two astronomer-mathematicians belonging to the Kerala school of astronomy and mathematics, on Bhaskara II's well-known textbook on mathematics Lilavati. Kriyakramakari, along with Yuktibhasa of Jyeshthadeva, is one of the main sources of information about the work and contributions of Sangamagrama Madhava, the founder of Kerala school of astronomy and mathematics. Also the quotations given in this treatise throw much light on the contributions of several mathematicians and astronomers who had flourished in an earlier era. There are several quotations ascribed to Govindasvami a 9th-century astronomer from Kerala.
Ganita Kaumudi is a treatise on mathematics written by Indian mathematician Narayana Pandita in 1356. It was an arithmetical treatise alongside the other algebraic treatise called "Bijganita Vatamsa" by Narayana Pandit. It was written as a commentary on the Līlāvatī by Bhāskara II.
A History of the Kerala School of Hindu Astronomy is the first definitive book giving a comprehensive description of the contribution of Kerala to astronomy and mathematics. The book was authored by K. V. Sarma who was a Reader in Sanskrit at Vishveshvaranand Institute of Sanskrit and Indological Studies, Panjab University, Hoshiarpur, at the time of publication of the book (1972). The book, among other things, contains details of the lives and works of about 80 astronomers and mathematicians belonging to the Kerala School. It has also identified 752 works belonging to the Kerala school.
R. Narayana Panickar was an Indian essayist, playwright, translator, lexicographer, novelist and historian of Malayalam. He was credited with over 100 books but the best known among them are the six-volume work, Kerala Bhasha Sahithya Charthram, a comprehensive history of Malayalam literature up to 1954 and Navayuga Bhasha Nighantu, a lexicon. He also wrote a number of novels and translated several classics of Tamil literature including Purananuru, Akanaṉūṟu and Silappatikaram. Sahitya Akademi honoured him with their annual award in 1955.