Glossary of representation theory

Last updated

This is a glossary of representation theory in mathematics.

Contents

The term "module" is often used synonymously for a representation; for the module-theoretic terminology, see also glossary of module theory.

See also Glossary of Lie groups and Lie algebras, list of representation theory topics and Category:Representation theory.

Notations: We write . Thus, for example, a one-representation (i.e., a character) of a group G is of the form .

A

Adams
Adams operations.
adjoint
The adjoint representation of a Lie group G is the representation given by the adjoint action of G on the Lie algebra of G (an adjoint action is obtained, roughly, by differentiating a conjugation action.)
admissible
A representation of a real reductive group is called admissible if (1) a maximal compact subgroup K acts as unitary operators and (2) each irreducible representation of K has finite multiplicity.
alternating
The alternating square of a representation V is a subrepresentation of the second tensor power .
Artin
1.   Emil Artin.
2.   Artin's theorem on induced characters states that a character on a finite group is a rational linear combination of characters induced from cyclic subgroups.
3.   Artin representation is used in the definition of the Artin conductor.
automorphic
automorphic representation

B

Borel–Weil–Bott theorem
Over an algebraically closed field of characteristic zero, the Borel–Weil–Bott theorem realizes an irreducible representation of a reductive algebraic group as the space of the global sections of a line bundle on a flag variety. (In the positive characteristic case, the construction only produces Weyl modules, which may not be irreducible.)
branching
branching rule
Brauer
Brauer's theorem on induced characters states that a character on a finite group is a linear combination with integer coefficients of characters induced from elementary subgroups.

C

Cartan–Weyl theory
Another name for the representation theory of semisimple Lie algebras.
Casimir element
A Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra.
category of representations
Representations and equivariant maps between them form a category of representations.
character
1.  A character is a one-dimensional representation.
2.  The character of a finite-dimensional representation π is the function . In other words, it is the composition .
3.  An irreducible character (resp. a trivial character) is the character of an irreducible representation (resp. a trivial representation).
4.  The character group of a group G is the group of all characters on G; namely, .
5.  The character ring is the group ring (over the integers) of the character group of G.
6.  A virtual character is an element of a character ring.
7.  A distributional character may be defined for an infinite-dimensional representation.
8.  An infinitesimal character.
Chevalley
1.  Chevalley
2.   Chevalley generators
3.   Chevalley group.
4.   Chevalley's restriction theorem.
class function
A class function f on a group G is a function such that ; it is a function on conjugacy classes.
cluster algebra
A cluster algebra is an integral domain with some combinatorial structure on the generators, introduced in an attempt to systematize the notion of a dual canonical basis.
coadjoint
A coadjoint representation is the dual representation of an adjoint representation.
complete
“completely reducible" is another term for "semisimple".
complex
1.  A complex representation is a representation of G on a complex vector space. Many authors refer complex representations simply as representations.
2.  The complex-conjugate of a complex representation V is the representation with the same underlying additive group V with the linear action of G but with the action of a complex number through complex conjugation.
3.  A complex representation is self-conjugate if it is isomorphic to its complex conjugate.
complementary
A complementary representation to a subrepresentation W of a representation V is a representation W' such that V is the direct sum of W and W'.
cuspidal
cuspidal representation
crystal
crystal basis
cyclic
A cyclic G-module is a G-module generated by a single vector. For example, an irreducible representation is necessarily cyclic.

D

Dedekind
Dedekind's theorem on linear independence of characters.
defined over
Given a field extension , a representation V of a group G over K is said to be defined over F if for some representation over F such that is induced by ; i.e., . Here, is called an F-form of V (and is not necessarily unique).
Demazure
Demazure's character formula
direct sum
The direct sum of representations V, W is a representation that is the direct sum of the vector spaces together with the linear group action .
discrete
An irreducible representation of a Lie group G is said to be in the discrete series if the matrix coefficients of it are all square integrable. For example, if G is compact, then every irreducible representation of it is in the discrete series.
dominant
The irreducible representations of a simply-connected compact Lie group are indexed by their highest weight. These dominant weights form the lattice points in an orthant in the weight lattice of the Lie group.
dual
1.  The dual representation (or the contragredient representation) of a representation V is a representation that is the dual vector space together with the linear group action that preserves the natural pairing
2.  A dual canonical basis is a dual of Lusztig's canonical basis.

E

Eisenstein
Eisenstein series
equivariant
The term “G-equivariant” is another term for “G-linear”.
exterior
An exterior power of a representation V is a representation with the group action induced by .

F

faithful
A faithful representation is a representation such that is injective as a function.
fiber functor
fiber functor.
Frobenius reciprocity
The Frobenius reciprocity states that for each representation of H and representation of G there is a bijection
that is natural in the sense that is the right adjoint functor to the restriction functor .
fundamental
Fundamental representation: For the irreducible representations of a simply-connected compact Lie group there exists a set of fundamental weights, indexed by the vertices of the Dynkin diagram of G, such that dominant weights are simply non-negative integer linear combinations of the fundamental weights. The corresponding irreducible representations are the fundamental representations of the Lie group. In particular, from the expansion of a dominant weight in terms of the fundamental weights, one can take a corresponding tensor product of the fundamental representations and extract one copy of the irreducible representation corresponding to that dominant weight. In the case of the special unitary group SU(n), the n 1 fundamental representations are the wedge products
consisting of alternating tensors, for k=1,2,...,n-1.

G

G-linear
A G-linear map between representations is a linear transformation that commutes with the G-actions; i.e., for every g in G.
G-module
Another name for a representation. It allows for the module-theoretic terminology: e.g., trivial G-module, G-submodules, etc.
G-equivariant vector bundle
A G-equivariant vector bundle is a vector bundle on a G-space X together with a G-action on E (say right) such that is a well-defined linear map.
good
A good filtration of a representation of a reductive group G is a filtration such that the quotients are isomorphic to where are the line bundles on the flag variety .

H

Harish-Chandra
1.   Harish-Chandra (11 October 1923 – 16 October 1983), an Indian American mathematician.
2.  The Harish-Chandra Plancherel theorem.
highest weight
1.  Given a complex semisimple Lie algebra , Cartan subalgebra and a choice of a positive Weyl chamber, the highest weight of a representation of is the weight of an -weight vector v such that for every positive root (v is called the highest weight vector).
2.  The theorem of the highest weight states (1) two finite-dimensional irreducible representations of are isomorphic if and only if they have the same highest weight and (2) for each dominant integral , there is a finite-dimensional irreducible representation having as its highest weight.
Hom
The Hom representation of representations V, W is a representation with the group action obtained by the vector space identification .

I

indecomposable
An indecomposable representation is a representation that is not a direct sum of at least two proper subrepresebtations.
induction
1.  Given a representation of a subgroup H of a group G, the induced representation
is a representation of G that is induced on the H-linear functions ; cf. #Frobenius reciprocity.
2.  Depending on applications, it is common to impose further conditions on the functions ; for example, if the functions are required to be compactly supported, then the resulting induction is called the compact induction.
infinitesimally
Two admissible representations of a real reductive group are said to be infinitesimally equivalent if their associated Lie algebra representations on the space of K-finite vectors are isomorphic.
integrable
A representation of a Kac–Moody algebra is said to be integrable if (1) it is a sum of weight spaces and (2) Chevalley generators are locally nilpotent.
intertwining
The term "intertwining operator" is an old name for a G-linear map between representations.
involution
An involution representation is a representation of a C*-algebra on a Hilbert space that preserves involution.
irreducible
An irreducible representation is a representation whose only subrepresentations are zero and itself. The term "irreducible" is synonymous with "simple".
isomorphism
An isomorphism between representations of a group G is an invertible G-linear map between the representations.
isotypic
1.  Given a representation V and a simple representation W (subrepresebtation or otherwise), the isotypic component of V of type W is the direct sum of all subrepresentations of V that are isomorphic to W. For example, let A be a ring and G a group acting on it as automorphisms. If A is semisimple as a G-module, then the ring of invariants is the isotypic component of A of trivial type.
2.  The isotypic decomposition of a semisimple representation is the decomposition into the isotypic components.

J

Jacquet
Jacquet functor

K

Kac
The Kac character formula
K-finite
A vector v in a representation space of a group K is said to be K-finite if spans a finite-dimensional vector space.
Kirillov
The Kirillov character formula

L

lattice
1.  The root lattice is the free abelian group generated by the roots.
2.  The weight lattice is the group of all linear functionals on a Cartan subalgebra that are integral: is an integer for every root .
Littlemann
Littelmann path model

M

Maschke's theorem
Maschke's theorem states that a finite-dimensional representation over a field F of a finite group G is a semisimple representation if the characteristic of F does not divide the order of G.
Mackey theory
The Mackey theory may be thought of a tool to answer the question: given a representation W of a subgroup H of a group G, when is the induced representation an irreducible representation of G? [1]
Maass–Selberg
Maass–Selberg relations.
matrix coefficient
A matrix coefficient of a representation is a linear combination of functions on G of the form for v in V and in the dual space . Note the notion makes sense for any group: if G is a topological group and is continuous, then a matrix matrix coefficient would be a continuous function on G. If G and are algebraic, it would be a regular function on G.
modular
The modular representation theory.
Molien
Given a finite-dimensional complex representation V of a finite group G, Molien's theorem says that the series , where denotes the space of -invariant homogeneous polynomials on V of degree n, coincides with . The theorem is also valid for a reductive group by replacing by integration over a maximal compact subgroup.

O

Oscillator
Oscillator representation
orbit
orbit method, an approach to representation theory that uses tools from symplectic geometry

P

Peter–Weyl
The Peter–Weyl theorem states that the linear span of the matrix coefficients on a compact group G is dense in .
permutation
Given a group G, a G-set X and V the vector space of functions from X to a fixed field, a permutation representation of G on V is a representation given by the induced action of G on V; i.e., . For example, if X is a finite set and V is viewed as a vector space with a basis parameteized by X, then the symmetric group permutates the elements of the basis and its linear extension is precisely the permutation representation.
Plancherel
Plancherel formula
positive-energy representation
positive-energy representation.
primitive
The term "primitive element" (or a vector) is an old term for a Borel-weight vector.
projective
A projective representation of a group G is a group homomorphism . Since , a projective representation is precisely a group action of G on as automorphisms.
proper
A proper subrepresentation of a representation V is a subrepresentstion that is not V.

Q

quotient
Given a representation V and a subrepresentation , the quotient representation is the representation given by .
quaternionic
A quaternionic representation of a group G is a complex representation equipped with a G-invariant quaternionic structure.
quiver
A quiver, by definition, is a directed graph. But one typically studies representations of a quiver.

R

rational
A representation V is rational if each vector v in V is contained in some finite-dimensional subrepresentation (depending on v.)
real
1.  A real representation of a vector space is a representation on a real vector space.
2.  A real character is a character of a group G such that for all g in G. [2]
regular
1.  A regular representation of a finite group G is the induced representation of G on the group algebra over a field of G.
2.  A regular representation of a linear algebraic group G is the induced representation on the coordinate ring of G. See also: representation on coordinate rings.
representation
1.  

Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is (e.g., a cohomology group, tangent space, etc.). As a consequence, many mathematicians other than specialists in the field (or even those who think they might want to be) come in contact with the subject in various ways.

Fulton, William; Harris, Joe, Representation Theory: A First Course

A linear representation of a group G is a group homomorphism from G to the general linear group . Depending on the group G, the homomorphism is often implicitly required to be a morphishm in a category to which G belongs; e.g., if G is a topological group, then must be continuous. The adjective “linear” is often omitted.
2.  Equivalently, a linear representation is a group action of G on a vector space V that is linear: the action such that for each g in G, is a linear transformation.
3.  A virtual representation is an element of the Grothendieck ring of the category of representations.
representative
The term "representative function" is another term for a matrix coefficient.

S

Schur
1.  
Issai Schur Schur.jpg
Issai Schur
Issai Schur
2.   Schur's lemma states that a G-linear map between irreducible representations must be either bijective or zero.
3.  The Schur orthogonality relations on a compact group says the characters of non-isomorphic irreducible representations are orthogonal to each other.
4.  The Schur functor constructs representations such as symmetric powers or exterior powers according to a partition . The characters of are Schur polynomials.
5.  The Schur–Weyl duality computes the irreducible representations occurring in tensor powers of -modules.
6.  A Schur polynomial is a symmetric function, of a type occurring in the Weyl character formula applied to unitary groups.
7.   Schur index.
8.  A Schur complex.
semisimple
A semisimple representation (also called a completely reducible representation) is a direct sum of simple representations.
simple
Another term for "irreducible".
smooth
1.  A smooth representation of a locally profinite group G is a complex representation such that, for each v in V, there is some compact open subgroup K of G that fixes v; i.e., for every g in K.
2.  A smooth vector in a representation space of a Lie group is a vector v such that is a smooth function.
Specht
Specht module
Steinberg
Steinberg representation.
subrepresentation
A subrepresentation of a representation of G is a vector subspace W of V such that is well-defined for each g in G.
Swan
The Swan representation is used to define the Swan conductor.
symmetric
1.  A symmetric power of a representation V is a representation with the group action induced by .
2.  In particular, the symmetric square of a representation V is a representation with the group action induced by .
system of imprimitivity
A concept in the Mackey theory. See system of imprimitivity.

T

Tannakian duality
The Tannakian duality is roughly an idea that a group can be recovered from all of its representations.
tempered
tempered representation
tensor
A tensor representation is roughly a representation obtained from tensor products (of certain representations).
tensor product
The tensor product of representations V, W is the representation that is the tensor product of vector spaces together with the linear group action .
trivial
1.  A trivial representation of a group G is a representation π such that π(g) is the identity for every g in G.
2.  A trivial character of a group G is a character that is trivial as a representation.

U

uniformly bounded
A uniformly bounded representation of a locally compact group is a representation in the algebra of bounded operators that is continuous in strong operator topology and that is such that the norm of the operator given by each group element is uniformly bounded.
unitary
1.  A unitary representation of a group G is a representation π such that π(g) is a unitary operator for every g in G.
2.  A unitarizable representation is a representation equivalent to a unitary representation.

V

Verma module
Given a complex semisimple Lie algebra , a Cartan subalgebra and a choice of a positive Weyl chamber, the Verma module associated to a linear functional is the quotient of the enveloping algebra by the left ideal generated by for all positive roots as well as for all . [3]

W

weight
1.  The term "weight" is another name for a character.
2.  The weight subspace of a representation V of a weight is the subspace that has positive dimension.
3.  Similarly, for a linear functional of a complex Lie algebra , is a weight of an -module V if has positive dimension; cf. #highest weight.
4.  weight lattice
5.  dominant weight: a weight \lambda is dominant if for some
6.  fundamental dominant weight: : Given a set of simple roots , it is a basis of . is a basis of too; the dual basis defined by , is called the fundamental dominant weights.
7.  highest weight
Weyl
1.   Hermann Weyl
2.  The Weyl character formula expresses the character of an irreducible representations of a complex semisimple Lie algebra in terms of highest weights.
3.  The Weyl integration formula says: given a compact connected Lie group G with a maximal torus T, there exists a real continuous function u on T such that for every continuous function f on G,
(Explicitly, is 1 over the cardinality of the Weyl group times the product of over the roots .)
4.   Weyl module.
5.  A Weyl filtration is a filtration of a representation of a reductive group such that the quotients are isomorphic to Weyl modules.

Y

Young
1.   Alfred Young
2.  The Young symmetrizer is the G-linear endomorphism of a tensor power of a G-module V defined according to a given partition . By definition, the Schur functor of a representation V assigns to V the image of .

Z

zero
A zero representation is a zero-dimensional representation. Note: while a zero representation is a trivial representation, a trivial representation need not be zero (since “trivial” mean G acts trivially.)

Notes

  1. "Induction and Mackey Theory" (PDF). Archived from the original (PDF) on 2017-12-01. Retrieved 2017-11-23.
  2. James, Gordon Douglas (2001). Representations and characters of groups. Liebeck, Martin W. 1954- (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN   978-0521003926. OCLC   52220683.
  3. Editorial note: this is the definition in (Humphreys 1972, § 20.3.) as well as (Gaitsgory 2005, § 1.2.) and differs from the original by half the sum of the positive roots.

Related Research Articles

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

<span class="mw-page-title-main">Representation theory of the Lorentz group</span> Representation of the symmetry group of spacetime in special relativity

The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.

Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.

In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra.

Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.

In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection

<span class="mw-page-title-main">Representation theory of semisimple Lie algebras</span>

In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

References

Further reading