Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)

Last updated
glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)
3gpd.jpg
Identifiers
EC no. 1.2.1.12
CAS no. 9001-50-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (EC 1.2.1.12) is an enzyme that catalyzes the chemical reaction

Contents

D-glyceraldehyde 3-phosphate + phosphate + NAD+ 3-phospho-D-glyceroyl phosphate + NADH + H+

The 3 substrates of this enzyme are D-glyceraldehyde 3-phosphate, phosphate, and NAD+, whereas its 3 products are 3-phospho-D-glyceroyl phosphate, NADH, and H+. This enzyme participates in glycolysis / gluconeogenesis.

Nomenclature

This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating). Other names in common use include triosephosphate dehydrogenase, dehydrogenase, glyceraldehyde phosphate, phosphoglyceraldehyde dehydrogenase, 3-phosphoglyceraldehyde dehydrogenase, NAD+-dependent glyceraldehyde phosphate dehydrogenase, glyceraldehyde phosphate dehydrogenase (NAD+), glyceraldehyde-3-phosphate dehydrogenase (NAD+), NADH-glyceraldehyde phosphate dehydrogenase, and glyceraldehyde-3-P-dehydrogenase.

Related Research Articles

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

Glyceraldehyde-3-phosphate dehydrogenase (NADP+) (GAPN) is an enzyme that irreversibly catalyzes the oxidation of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate using the reduction of NADP+ to NADPH. GAPN is used in a variant of glycolysis that conserves energy as NADPH rather than as ATP. The NADPH and 3-PG can then be used for synthesis. The most familiar variant of glycolysis uses glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase to produce ATP. GAPDH is phosphorylating. GAPN is non-phosphorylating.

<span class="mw-page-title-main">Glycerol-3-phosphate dehydrogenase</span> Class of enzymes

Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that catalyzes the reversible redox conversion of dihydroxyacetone phosphate to sn-glycerol 3-phosphate.

In enzymology, a sorbitol-6-phosphate dehydrogenase (EC 1.1.1.140) is an enzyme that catalyzes the chemical reaction

In enzymology, an erythrose-4-phosphate dehydrogenase (EC 1.2.1.72) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">D-xylulose reductase</span>

In enzymology, a D-xylulose reductase (EC 1.1.1.9) is an enzyme that is classified as an Oxidoreductase (EC 1) specifically acting on the CH-OH group of donors (EC 1.1.1) that uses NAD+ or NADP+ as an acceptor (EC 1.1.1.9). This enzyme participates in pentose and glucuronate interconversions; a set of metabolic pathways that involve converting pentose sugars and glucuronate into other compounds.

In enzymology, a glycerol-3-phosphate 1-dehydrogenase (NADP+) (EC 1.1.1.177) is an enzyme that catalyzes the chemical reaction

Glycerol-3-phosphate dehydrogenase (NAD<sup>+</sup>)

In enzymology, a glycerol-3-phosphate dehydrogenase (NAD+) (EC 1.1.1.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a glycerol dehydrogenase (NADP+) (EC 1.1.1.72) is an enzyme that catalyzes the chemical reaction

In enzymology, an inositol 2-dehydrogenase (EC 1.1.1.18) is an enzyme that catalyzes the chemical reaction

In enzymology, a 4-hydroxythreonine-4-phosphate dehydrogenase (EC 1.1.1.262) is an enzyme that catalyzes the chemical reaction

In enzymology, a 4-phosphoerythronate dehydogenase (EC 1.1.1.290) is an enzyme that catalyzes the chemical reaction

In enzymology, a L-glycol dehydrogenase (EC 1.1.1.185) is an enzyme that catalyzes the chemical reaction

In enzymology, a mannitol-1-phosphate 5-dehydrogenase (EC 1.1.1.17) is an enzyme that catalyzes the chemical reaction

In enzymology, a ribitol-5-phosphate 2-dehydrogenase (EC 1.1.1.137) is an enzyme that catalyzes the chemical reaction

In enzymology, a glyceraldehyde-3-phosphate dehydrogenase (ferredoxin) (EC 1.2.7.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+) (EC 1.2.1.59) is an enzyme that catalyzes the chemical reaction

In enzymology, a glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating) (EC 1.2.1.13) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">1-Arseno-3-phosphoglycerate</span>

1-Arseno-3-phosphoglycerate is a compound produced by the enzyme glyceraldehyde 3-phosphate dehydrogenase, present in high concentrations in many organisms, from glyceraldehyde 3-phosphate and arsenate in the glycolysis pathway. The compound is unstable and hydrolyzes spontaneously to 3-phosphoglycerate, bypassing the energy producing step of glycolysis.

References

    Further reading