General relativity |
---|
![]() |
The Goldberg–Sachs theorem is a result in Einstein's theory of general relativity about vacuum solutions of the Einstein field equations relating the existence of a certain type of congruence with algebraic properties of the Weyl tensor.
More precisely, the theorem states that a vacuum solution of the Einstein field equations will admit a shear-free null geodesic congruence if and only if the Weyl tensor is algebraically special.
The theorem is often used when searching for algebraically special vacuum solutions.
A ray is a family of geodesic light-like curves. That is tangent vector field is null and geodesic: and . At each point, there is a (nonunique) 2D spatial slice of the tangent space orthogonal to . It is spanned by a complex null vector and its complex conjugate . If the metric is time positive, then the metric projected on the slice is . Goldberg and Sachs considered the projection of the gradient on this slice.
A ray is shear-free if . Intuitively, this means a small shadow cast by the ray will preserve its shape. The shadow may rotate and grow/shrink, but it will not be distorted.
A vacuum metric, , is algebraically special if and only if it contains a shear-free null geodesic congruence; the tangent vector obeys . [1]
This is the theorem originally stated by Goldberg and Sachs. While they stated it in terms of tangent vectors and the Weyl tensor, the proof is much simpler in terms of spinors. The Newman-Penrose field equations [2] give a natural framework for investigating Petrov classifications, since instead of proving , one can just prove . For these proofs, assume we have a spin frame with having its flagpole aligned with the shear-free ray .
Proof that a shear-free ray implies algebraic specialty: If a ray is geodesic and shear-free, then . A complex rotation does not affect and can set to simplify calculations. The first useful NP equation is , which immediately gives .
To show that , apply the commutator to it. The Bianchi identity gives the needed formulae: and . [3] Working through the algebra of this commutator will show , which completes this part of the proof.
Proof that algebraic specialty implies a shear-free ray: Suppose is a degenerate factor of . While this degeneracy could be n-fold (n=2,3,4) and the proof will be functionally the same, take it to be a 2-fold degeneracy. Then the projection . The Bianchi identity in a vacuum spacetime is , so applying a derivative to the projection will give , which is equivalent to The congruence is therefore shear-free and almost geodesic: . A suitable rescaling of exists which will make this congruence geodesic, and thus a shear-free ray. The shear of a vector field is invariant under rescaling, so it will remain shear-free.
In Petrov type D spacetimes, there are two algebraic degeneracies. By the Goldberg-Sachs theorem there are then two shear-free rays which point along these degenerate directions. Since the Newman-Penrose equations are written in a basis with two real null vectors, there is a natural basis which simplifies the field equations. Examples of such vacuum spacetimes are the Schwarzschild metric and the Kerr metric, which describes a nonrotating and a rotating black hole, respectively. It is precisely this algebraic simplification which makes solving for the Kerr metric possible by hand.
In the Schwarzschild case with time-symmetric coordinates, the two shear-free rays are
Under the coordinate transformation where is the tortoise coordinate, this simplifies to .
It has been shown by Dain and Moreschi [4] that a corresponding theorem will not hold in linearized gravity, that is, given a solution of the linearised Einstein field equations admitting a shear-free null congruence, then this solution need not be algebraically special.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.
Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.
The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.
In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.
In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.
In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.
In general relativity, a congruence is the set of integral curves of a vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.
In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.
In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Dirac in 1928.
In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.
In general relativity, optical scalars refer to a set of three scalar functions (expansion), (shear) and (twist/rotation/vorticity) describing the propagation of a geodesic null congruence.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.
In physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime. They occur in the relativistic spin-1/2 wave function solutions to the Dirac equation.
In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".
A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed.
Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically incorporated in the Green–Schwarz formalism.