Horner's method

Last updated

In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1] After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials.

Contents

The algorithm is based on Horner's rule, in which a polynomial is written in nested form:

This allows the evaluation of a polynomial of degree n with only multiplications and additions. This is optimal, since there are polynomials of degree n that cannot be evaluated with fewer arithmetic operations. [2]

Alternatively, Horner's method also refers to a method for approximating the roots of polynomials, described by Horner in 1819. It is a variant of the Newton–Raphson method made more efficient for hand calculation by the application of Horner's rule. It was widely used until computers came into general use around 1970.

Polynomial evaluation and long division

Given the polynomial where are constant coefficients, the problem is to evaluate the polynomial at a specific value of

For this, a new sequence of constants is defined recursively as follows:

Then is the value of .

To see why this works, the polynomial can be written in the form

Thus, by iteratively substituting the into the expression,

Now, it can be proven that;

This expression constitutes Horner's practical application, as it offers a very quick way of determining the outcome of; with (which is equal to ) being the division's remainder, as is demonstrated by the examples below. If is a root of , then (meaning the remainder is ), which means you can factor as .

To finding the consecutive -values, you start with determining , which is simply equal to . Then you then work recursively using the formula: till you arrive at .

Examples

Evaluate for .

We use synthetic division as follows:

x0x3x2x1x0  3 │   2    −6     2    −1    │         6     0     6    └────────────────────────        2     0     2     5

The entries in the third row are the sum of those in the first two. Each entry in the second row is the product of the x-value (3 in this example) with the third-row entry immediately to the left. The entries in the first row are the coefficients of the polynomial to be evaluated. Then the remainder of on division by is 5.

But by the polynomial remainder theorem, we know that the remainder is . Thus, .

In this example, if we can see that , the entries in the third row. So, synthetic division (which was actually invented and published by Ruffini 10 years before Horner's publication) is easier to use; it can be shown to be equivalent to Horner's method.

As a consequence of the polynomial remainder theorem, the entries in the third row are the coefficients of the second-degree polynomial, the quotient of on division by . The remainder is 5. This makes Horner's method useful for polynomial long division.

Divide by :

 2 │   1    −6    11    −6    │         2    −8     6    └────────────────────────        1    −4     3     0

The quotient is .

Let and . Divide by using Horner's method.

  0.5 │ 4  −6   0   3  −5       │     2  −2  −1   1       └───────────────────────         2  −2  −1   1  −4

The third row is the sum of the first two rows, divided by 2. Each entry in the second row is the product of 1 with the third-row entry to the left. The answer is

Efficiency

Evaluation using the monomial form of a degree polynomial requires at most additions and multiplications, if powers are calculated by repeated multiplication and each monomial is evaluated individually. The cost can be reduced to additions and multiplications by evaluating the powers of by iteration.

If numerical data are represented in terms of digits (or bits), then the naive algorithm also entails storing approximately times the number of bits of : the evaluated polynomial has approximate magnitude , and one must also store itself. By contrast, Horner's method requires only additions and multiplications, and its storage requirements are only times the number of bits of . Alternatively, Horner's method can be computed with fused multiply–adds. Horner's method can also be extended to evaluate the first derivatives of the polynomial with additions and multiplications. [3]

Horner's method is optimal, in the sense that any algorithm to evaluate an arbitrary polynomial must use at least as many operations. Alexander Ostrowski proved in 1954 that the number of additions required is minimal. [4] Victor Pan proved in 1966 that the number of multiplications is minimal. [5] However, when is a matrix, Horner's method is not optimal.

This assumes that the polynomial is evaluated in monomial form and no preconditioning of the representation is allowed, which makes sense if the polynomial is evaluated only once. However, if preconditioning is allowed and the polynomial is to be evaluated many times, then faster algorithms are possible. They involve a transformation of the representation of the polynomial. In general, a degree- polynomial can be evaluated using only n/2+2 multiplications and additions. [6]

Parallel evaluation

A disadvantage of Horner's rule is that all of the operations are sequentially dependent, so it is not possible to take advantage of instruction level parallelism on modern computers. In most applications where the efficiency of polynomial evaluation matters, many low-order polynomials are evaluated simultaneously (for each pixel or polygon in computer graphics, or for each grid square in a numerical simulation), so it is not necessary to find parallelism within a single polynomial evaluation.

If, however, one is evaluating a single polynomial of very high order, it may be useful to break it up as follows:

More generally, the summation can be broken into k parts: where the inner summations may be evaluated using separate parallel instances of Horner's method. This requires slightly more operations than the basic Horner's method, but allows k-way SIMD execution of most of them. Modern compilers generally evaluate polynomials this way when advantageous, although for floating-point calculations this requires enabling (unsafe) reassociative math[ citation needed ].

Application to floating-point multiplication and division

Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) , and . Then, x (or x to some power) is repeatedly factored out. In this binary numeral system (base 2), , so powers of 2 are repeatedly factored out.

Example

For example, to find the product of two numbers (0.15625) and m:

Method

To find the product of two binary numbers d and m:

  1. A register holding the intermediate result is initialized to d.
  2. Begin with the least significant (rightmost) non-zero bit in m.
    1. Count (to the left) the number of bit positions to the next most significant non-zero bit. If there are no more-significant bits, then take the value of the current bit position.
    2. Using that value, perform a left-shift operation by that number of bits on the register holding the intermediate result
  3. If all the non-zero bits were counted, then the intermediate result register now holds the final result. Otherwise, add d to the intermediate result, and continue in step 2 with the next most significant bit in m.

Derivation

In general, for a binary number with bit values () the product is At this stage in the algorithm, it is required that terms with zero-valued coefficients are dropped, so that only binary coefficients equal to one are counted, thus the problem of multiplication or division by zero is not an issue, despite this implication in the factored equation:

The denominators all equal one (or the term is absent), so this reduces to or equivalently (as consistent with the "method" described above)

In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2−1) is a right arithmetic shift, a (0) results in no operation (since 20 = 1 is the multiplicative identity element), and a (21) results in a left arithmetic shift. The multiplication product can now be quickly calculated using only arithmetic shift operations, addition and subtraction.

The method is particularly fast on processors supporting a single-instruction shift-and-addition-accumulate. Compared to a C floating-point library, Horner's method sacrifices some accuracy, however it is nominally 13 times faster (16 times faster when the "canonical signed digit" (CSD) form is used) and uses only 20% of the code space. [7]

Other applications

Horner's method can be used to convert between different positional numeral systems – in which case x is the base of the number system, and the ai coefficients are the digits of the base-x representation of a given number – and can also be used if x is a matrix, in which case the gain in computational efficiency is even greater. However, for such cases faster methods are known. [8]

Polynomial root finding

Using the long division algorithm in combination with Newton's method, it is possible to approximate the real roots of a polynomial. The algorithm works as follows. Given a polynomial of degree with zeros make some initial guess such that . Now iterate the following two steps:

  1. Using Newton's method, find the largest zero of using the guess .
  2. Using Horner's method, divide out to obtain . Return to step 1 but use the polynomial and the initial guess .

These two steps are repeated until all real zeros are found for the polynomial. If the approximated zeros are not precise enough, the obtained values can be used as initial guesses for Newton's method but using the full polynomial rather than the reduced polynomials. [9]

Example

Polynomial root finding using Horner's method HornerandNewton.gif
Polynomial root finding using Horner's method

Consider the polynomial which can be expanded to

From the above we know that the largest root of this polynomial is 7 so we are able to make an initial guess of 8. Using Newton's method the first zero of 7 is found as shown in black in the figure to the right. Next is divided by to obtain which is drawn in red in the figure to the right. Newton's method is used to find the largest zero of this polynomial with an initial guess of 7. The largest zero of this polynomial which corresponds to the second largest zero of the original polynomial is found at 3 and is circled in red. The degree 5 polynomial is now divided by to obtain which is shown in yellow. The zero for this polynomial is found at 2 again using Newton's method and is circled in yellow. Horner's method is now used to obtain which is shown in green and found to have a zero at 3. This polynomial is further reduced to which is shown in blue and yields a zero of 5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing and solving the linear equation. As can be seen, the expected roots of 8, 5, 3, 2, 3, and 7 were found.

Divided difference of a polynomial

Horner's method can be modified to compute the divided difference Given the polynomial (as before) proceed as follows [10]

At completion, we have This computation of the divided difference is subject to less round-off error than evaluating and separately, particularly when . Substituting in this method gives , the derivative of .

History

Qin Jiushao's algorithm for solving the quadratic polynomial equation
-
x
4
+
763200
x
2
-
40642560000
=
0
{\displaystyle -x^{4}+763200x^{2}-40642560000=0}

result: x=840 Qingjiushaoquad1.GIF
Qin Jiushao's algorithm for solving the quadratic polynomial equation
result: x=840

Horner's paper, titled "A new method of solving numerical equations of all orders, by continuous approximation", [12] was read before the Royal Society of London, at its meeting on July 1, 1819, with a sequel in 1823. [12] Horner's paper in Part II of Philosophical Transactions of the Royal Society of London for 1819 was warmly and expansively welcomed by a reviewer [ permanent dead link ] in the issue of The Monthly Review: or, Literary Journal for April, 1820; in comparison, a technical paper by Charles Babbage is dismissed curtly in this review. The sequence of reviews in The Monthly Review for September, 1821, concludes that Holdred was the first person to discover a direct and general practical solution of numerical equations. Fuller [13] showed that the method in Horner's 1819 paper differs from what afterwards became known as "Horner's method" and that in consequence the priority for this method should go to Holdred (1820).

Unlike his English contemporaries, Horner drew on the Continental literature, notably the work of Arbogast. Horner is also known to have made a close reading of John Bonneycastle's book on algebra, though he neglected the work of Paolo Ruffini.

Although Horner is credited with making the method accessible and practical, it was known long before Horner. In reverse chronological order, Horner's method was already known to:

Qin Jiushao, in his Shu Shu Jiu Zhang ( Mathematical Treatise in Nine Sections ; 1247), presents a portfolio of methods of Horner-type for solving polynomial equations, which was based on earlier works of the 11th century Song dynasty mathematician Jia Xian; for example, one method is specifically suited to bi-quintics, of which Qin gives an instance, in keeping with the then Chinese custom of case studies. Yoshio Mikami in Development of Mathematics in China and Japan (Leipzig 1913) wrote:

"... who can deny the fact of Horner's illustrious process being used in China at least nearly six long centuries earlier than in Europe ... We of course don't intend in any way to ascribe Horner's invention to a Chinese origin, but the lapse of time sufficiently makes it not altogether impossible that the Europeans could have known of the Chinese method in a direct or indirect way." [20]

Ulrich Libbrecht concluded: It is obvious that this procedure is a Chinese invention ... the method was not known in India. He said, Fibonacci probably learned of it from Arabs, who perhaps borrowed from the Chinese. [21] The extraction of square and cube roots along similar lines is already discussed by Liu Hui in connection with Problems IV.16 and 22 in Jiu Zhang Suan Shu, while Wang Xiaotong in the 7th century supposes his readers can solve cubics by an approximation method described in his book Jigu Suanjing.

See also

Notes

  1. 600 years earlier, by the Chinese mathematician Qin Jiushao and 700 years earlier, by the Persian mathematician Sharaf al-Dīn al-Ṭūsī
  2. Pan 1966
  3. Pankiewicz 1968.
  4. Ostrowski 1954.
  5. Pan 1966.
  6. Knuth 1997.
  7. Kripasagar 2008 , p. 62.
  8. Higham 2002 , Section 5.4.
  9. Kress 1991 , p. 112.
  10. Fateman & Kahan 2000
  11. Libbrecht 2005 , pp. 181–191.
  12. 1 2 Horner 1819.
  13. Fuller 1999 , pp. 29–51.
  14. Cajori 1911.
  15. 1 2 O'Connor, John J.; Robertson, Edmund F., "Horner's method", MacTutor History of Mathematics Archive , University of St Andrews
  16. Analysis Per Quantitatum Series, Fluctiones ac Differentias : Cum Enumeratione Linearum Tertii Ordinis, Londini. Ex Officina Pearsoniana. Anno MDCCXI, p. 10, 4th paragraph.
  17. Newton's collected papers, the edition 1779, in a footnote, vol. I, p. 270-271
  18. Berggren 1990 , pp. 304–309.
  19. Temple 1986 , p. 142.
  20. Mikami 1913, p. 77
  21. Libbrecht 2005 , p. 208.

Related Research Articles

<span class="mw-page-title-main">Chinese remainder theorem</span> Theorem for solving simultaneous congruences

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography, this method is also referred to as double-and-add.

<span class="mw-page-title-main">Multiplication</span> Arithmetical operation

Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960. They have many applications, including consumer technologies such as MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes, Data Matrix, data transmission technologies such as DSL and WiMAX, broadcast systems such as satellite communications, DVB and ATSC, and storage systems such as RAID 6.

A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal numeral system.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps.

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a0(x), ..., an(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y(n) are the successive derivatives of an unknown function y of the variable x.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software.

In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

In mathematics and computer science, polynomial evaluation refers to computation of the value of a polynomial when its indeterminates are substituted for some values. In other words, evaluating the polynomial at consists of computing See also Polynomial ring § Polynomial evaluation

References