IBM System/360 Model 20

Last updated
IBM System/360 Model 20
IBM Logo 1956 1972.svg
LCM - IBM System 360 - 01.jpg
An IBM System/360 Model 20, with IBM 1442 at right and IBM 2203 line printer on left
ManufacturerInternational Business Machines Corporation (IBM)
Product family System/360
Release dateNovember 1964 (1964-11)
Memory4–32 KB Core

The IBM System/360 Model 20 is the smallest member of the IBM System/360 family announced in November 1964. The Model 20 supports only a subset of the System/360 instruction set, with binary numbers limited to 16 bits and no floating point. [1] In later years it would have been classified as a 16-bit minicomputer rather than a mainframe, but the term "minicomputer" was not current, and in any case IBM wanted to emphasize the compatibility of the Model 20 rather than its differences from the rest of the System/360 line. It does, however, have the full System/360 decimal instruction set, that allows for addition, subtraction, product, and dividend of up to 31 decimal digits.

Contents

Developed by IBM in Böblingen, Germany, [2] :pp.217–218,352 the system was intended for data processing and as a replacement for tab equipment. An incompatible small computer, the IBM 1130 introduced the following year, was designed for scientific and engineering computing.

The design of the Model 20 was the result of a tug of war within IBM. John Haanstra had wanted a low-end machine that could execute IBM 1401 instructions. Fred Brooks wanted the machine to have System/360 architecture. The final result was a compromise where cost concerns predominated: the system leased for under $2000 per month (equivalent to $18,871in 2022) including Multi-Function Card Machine and line printer, compared to around $3000 (equivalent to $28,307in 2022) for a comparable 1401. [2] :p.446

Based on number of systems sold the Model 20 was the most successful model of System/360. According to Pugh "The number of Model 20 processors installed by the end of 1970 in the United States exceeded 7,400." [2] :p.639 Other models, however, brought in greater revenue. Despite their popularity there are relatively few Model 20s in existence in working condition in 2020. [3]

Another IBM System/360 Model 20 CPU. IBM system 360.JPG
Another IBM System/360 Model 20 CPU.
An IBM System/360 Model 20 (with front panels removed), with IBM 2560 MFCM (Multi-Function Card Machine) at right DM IBM S360.jpg
An IBM System/360 Model 20 (with front panels removed), with IBM 2560 MFCM (Multi-Function Card Machine) at right

Architecture

The Model 20 was available with six memory sizes: 4, 8, 12, 16, 24 and 32 KB. As in other models of System/360 memory is byte-addressable. [1] :p.1 It has eight 16-bit general purpose registers numbered R8 through R15 which can be used in computations as base registers. All of memory is also directly addressable through a feature, called direct addressing, that combines the twelve bit displacement and the low-order bits of what would normally be the base register field of the instruction (R0-R7) to form a combined fifteen bit address. [1] :p.4 No storage protection is provided, except for the low 144 bytes of "protected area".

The instruction set is a subset of System/360 consisting of 37 instructions instead of 143, [1] :pp.7–25 [4] :p.384 with some incompatible instructions, such as a BASR (Branch And Store Register) rather than BALR (Branch And Link Register).

Like most other models of System/360 the Model 20 is microprogrammed; it uses transformer read-only storage (TROS).

Peripherals

As of 1967 the following peripherals were supported: [1] :pp.36–110

The system can also have an integrated communications adapter. Two adapter versions were available, one for Synchronous transmit-receive (STR) and one for binary synchronous communications (Bisync).

2311 Disk Storage

Model 20 disk storage uses IBM 2311 disk drives, model 11 or 12, attached to an integrated "storage control feature" on the CPU. [1] :pp.58–76 If multiple drives are attached they have to be the same model. Both models use the 1316 disk pack which provides a maximum of 203 cylinders with 10 tracks per cylinder. The model 11 uses all cylinders, the model 12 uses only the outermost 103. Each track is divided into ten sectors of 270 bytes each. The model 11 has a formatted capacity of 5.4 million bytes, and the model 12 of 2.5 million. [5]

IBM 2560 Multi-Function Card Machine

The IBM 2560 Multi-Function Card Machine (MFCM) [6] is a peripheral first offered on the Model 20. Due to its reliability problems, often involving card jams, the acronym was frequently interpreted as referring to many less favorable names.

The 2560 has two hoppers into which punch cards can be placed. The cards in the second hopper can contain punched cards to be read or blank cards to be punched. Two models were offered:

Card flow is: a read station, a punch station, and on the A2 a print station allowing text to be printed on cards. Cards then flowed into one of the stackers after being processed. [1] :41–43 This allows it to function as a card reader and a card punch. As a program can issue a Write Card instruction to print on the card after reading card data with a Read Primary Card or Read Secondary Card instruction, it can also, under program control, function as an interpreter and, as a program can issue a Primary Card Stacker Select or Secondary Card Stacker Select instruction to select the stacker into which a card should be put after reading card data, it can function as a card sorter. This allows the Model 20 to replace several separate pieces of punched-card equipment.

IBM's announcement proclaimed the 2560 as providing "a card-handling capability never before possible on a single pass through the system." [8] [7] :13 [9] Since all I/O is performed by the processor, the system is particularly suited to controlling timing-dependent devices such as the 2560, where a card can be read, punched into, printed on, and sent to a specified output stacker with tight timing requirements if full rated speed is to be maintained.

Software

Disk Programming System

The Disk Programming System (DPS) is a control program for a Model 20 with at least 12 KiB of memory and one disk drive. The components of DPS are: [10]

Rollout/Rollin allows the computer operator to interrupt a running batch program, execute an inquiry program, and then restart the batch job where it was interrupted.

Tape Programming System

Tape Programming Support (TPS) supports systems with magnetic tape drives but no disk drives. The minimum configuration for TPS is 4096 bytes of main storage, a card reader, a card punch, a printer and two magnetic tape drives. On such systems TPS provides an assembler and tape manipulation utility programs. Additional capabilities are provided on systems with 8192 bytes of main storage, and still more with four or more magnetic tape drives. [11] :42–43

Card Programming Support

Card Programming System (CPS) is a set of control programs for a Model 20 computer system with only card input/output devices.

Languages

Other IBM programs

Clones

The UNIVAC 9200 and 9300 processors were clones of the Model 20.

Remaining machines

Despite having been sold or leased in very large numbers for a mainframe system of its era, only a few of System/360 Model 20 computers remain. These are primarily the property of museums or collectors. Examples of existing systems include:

A running list of remaining System/360s can be found at World Inventory of remaining System/360 CPUs.

See also

Related Research Articles

A disk operating system (DOS) is a computer operating system that resides on and can use a disk storage device, such as a floppy disk, hard disk drive, or optical disc. A disk operating system provides a file system for organizing, reading, and writing files on the storage disk, and a means for loading and running programs stored on that disk. Strictly, this definition does not include any other functionality, so it does not apply to more complex OSes, such as Microsoft Windows, and is more appropriately used only for older generations of operating systems.

<span class="mw-page-title-main">IBM System/360</span> IBM mainframe computer family (1964–1977)

The IBM System/360 (S/360) is a family of mainframe computer systems that was announced by IBM on April 7, 1964, and delivered between 1965 and 1978. It was the first family of computers designed to cover both commercial and scientific applications and a complete range of applications from small to large. The design distinguished between architecture and implementation, allowing IBM to release a suite of compatible designs at different prices. All but the only partially compatible Model 44 and the most expensive systems use microcode to implement the instruction set, featuring 8-bit byte addressing and binary, decimal and hexadecimal floating-point calculations.

<span class="mw-page-title-main">Booting</span> Process of starting a computer

In computing, booting is the process of starting a computer as initiated via hardware such as a button or by a software command. After it is switched on, a computer's central processing unit (CPU) has no software in its main memory, so some process must load software into memory before it can be executed. This may be done by hardware or firmware in the CPU, or by a separate processor in the computer system.

The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years. In 1989, Honeywell sold its computer division to the French company Groupe Bull who continued to market compatible machines.

<span class="mw-page-title-main">IBM 1620</span> Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

<span class="mw-page-title-main">IBM 1401</span> 1960s decimal computer

The IBM 1401 is a variable-wordlength decimal computer that was announced by IBM on October 5, 1959. The first member of the highly successful IBM 1400 series, it was aimed at replacing unit record equipment for processing data stored on punched cards and at providing peripheral services for larger computers. The 1401 is considered by IBM to be the Ford Model-T of the computer industry due to its mass appeal. Over 12,000 units were produced and many were leased or resold after they were replaced with newer technology. The 1401 was withdrawn on February 8, 1971.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">IBM 1130</span> 16-bit IBM minicomputer introduced in 1965

The IBM 1130 Computing System, introduced in 1965, was IBM's least expensive computer at that time. A binary 16-bit machine, it was marketed to price-sensitive, computing-intensive technical markets, like education and engineering, succeeding the decimal IBM 1620 in that market segment. Typical installations included a 1 megabyte disk drive that stored the operating system, compilers and object programs, with program source generated and maintained on punched cards. Fortran was the most common programming language used, but several others, including APL, were available.

Disk Operating System/360, also DOS/360, or simply DOS, is the discontinued first member of a sequence of operating systems for IBM System/360, System/370 and later mainframes. It was announced by IBM on the last day of 1964, and it was first delivered in June 1966. In its time, DOS/360 was the most widely used operating system in the world.

<span class="mw-page-title-main">IBM System/3</span> IBM midrange computer (1969–1985)

The IBM System/3 was an IBM midrange computer introduced in 1969, and marketed until 1985. It was produced by IBM Rochester in Minnesota as a low-end business computer aimed at smaller organizations that still used IBM 1400 series computers or unit record equipment. The first member of what IBM refers to as their "midrange" line, it also introduced the RPG II programming language. It is the first ancestor in the product line whose current version is the IBM i series and includes the highly successful AS/400.

<span class="mw-page-title-main">IBM 1400 series</span> Second generation mid-range business decimal computers

The IBM 1400 series were second-generation (transistor) mid-range business decimal computers that IBM marketed in the early 1960s. The computers were offered to replace tabulating machines like the IBM 407. The 1400-series machines stored information in magnetic cores as variable-length character strings separated on the left by a special bit, called a "wordmark," and on the right by a "record mark." Arithmetic was performed digit-by-digit. Input and output support included punched card, magnetic tape, and high-speed line printers. Disk storage was also available.

<span class="mw-page-title-main">IBM 7070</span> Decimal computer introduced by IBM in 1958

IBM 7070 is a decimal-architecture intermediate data-processing system that was introduced by IBM in 1958. It was part of the IBM 700/7000 series, and was based on discrete transistors rather than the vacuum tubes of the 1950s. It was the company's first transistorized stored-program computer.

The IBM Basic assembly language and successors is a series of assembly languages and assemblers made for the IBM System/360 mainframe system and its successors through the IBM Z.

<span class="mw-page-title-main">NCR Century 100</span> 1968 computer system

The NCR Century 100 was NCR's first all integrated circuit computer built in 1968. All logic gates were created by wire-wrapping NAND gates together to form flip-flops and other complex circuits. The console of the system had only 18 lights and switches and allowed entry of a boot routine, or changes to loaded programs or data in memory. A typewriter console was also available.

The IBM System/360 architecture is the model independent architecture for the entire S/360 line of mainframe computers, including but not limited to the instruction set architecture. The elements of the architecture are documented in the IBM System/360 Principles of Operation and the IBM System/360 I/O Interface Channel to Control Unit Original Equipment Manufacturers' Information manuals.

The IBM Administrative Terminal System, also known as ATS/360, provided text- and data-management tools for working with documents to users of IBM System/360 systems.

<span class="mw-page-title-main">IBM System/360 Model 44</span> Specialized IBM computer model from 1960s

The IBM System/360 Model 44 is a specialized member of the IBM System/360 family, with a variant of the System/360 computer architecture, designed for scientific computing, real-time computing, process control and numerical control (NC).

<span class="mw-page-title-main">IBM System/360 Model 25</span> Low-end IBM computer model from late-1960s

The IBM System/360 Model 25 is a low-end member of the IBM System/360 family. It was announced on January 3, 1968, 3 years before the IBM System/360 Model 22, as a "bridge between its old and new computing systems".

<span class="mw-page-title-main">IBM System/370 Model 115</span>

The IBM System/370 Model 115 was announced March 13, 1973, at that time the low-end model of the System/370 line. It was promoted as "an ideal System/370 entry system for users of IBM's System/3, 1130 computing system and System/360 Models 20, 22 and 25."

References

  1. 1 2 3 4 5 6 7 IBM System/360 Model 20 Functional Characteristics (PDF). IBM. 1967. A26-5847-3.
  2. 1 2 3 Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (1991). IBM's 360 and Early 370 Systems . MIT Press. ISBN   0-262-16123-0.
  3. Bradley, Adam; Blackburn, Christopher; Vaughan, Peter. "IBM 360 Model 20 Rescue and Restoration" . Retrieved Mar 2, 2020.
  4. Pugh, Emerson W. (1995). Building IBM: Shaping an Industry and Its Technology. MIT Press. ISBN   0-262-16147-8.
  5. IBM Field Engineering Theory of Operation 2311 Disk Storage Drive Models 1, 11 and 12 (PDF). IBM. Y26-5897-4. describes the IBM 2311, including models 11 and 12, used on System/360 model 20
  6. C. E. Spurrier (1966). "The IBM 2560 multi-function card machine". Proceedings of the April 26–28, 1966, Spring joint computer conference - AFIPS '66 (Spring). pp. 315–321. doi: 10.1145/1464182.1464221 . ISBN   9781450378925. S2CID   24960497.
  7. 1 2 IBM System/360 System Summary. IBM. Model 20. A22-6810.
  8. "IBM 360 Model 20 customer engineering announcement" (PDF).
  9. IBM Field Engineering Manual of Instruction, System/360 Model 20 2020 Processor (PDF). IBM.
  10. IBM System/360 Model 20 Disk Programming System Control and Service Programs (PDF) (Fifth ed.). IBM. March 1969. C24-9006-4.
  11. IBM System/360 Model 20 Tape Programming System Operating Procedures (PDF) (Fourth ed.). IBM. March 1969. C24-9009-3. This publication provides Model 20 operators with the information required to operate their systems using the Model 20 Tape Programming System (TPS)
  12. IBM System/360 Model 20 Disk Programming System PL/I (PDF) (First ed.). IBM. December 1968. C33-6007-1.
  13. "IBM 360 MODEL 20 RESCUE AND RESTORATION". 2019. Retrieved 2019-05-20.
  14. "Deutsches Museum - Computers with semiconductor components". 2020. Archived from the original on 2020-06-01. Retrieved 2020-03-18.

Further reading