IFFO1

Last updated
IFFO1
Identifiers
Aliases IFFO1 , HOM-TES-103, IFFO, intermediate filament family orphan 1
External IDs OMIM: 610495; MGI: 2444516; HomoloGene: 18706; GeneCards: IFFO1; OMA:IFFO1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001039669
NM_178787
NM_001302778
NM_001302779

RefSeq (protein)

NP_001034759
NP_001180386
NP_001317253
NP_001317254
NP_542768

Contents

NP_001034758
NP_001289707
NP_001289708
NP_848902

Location (UCSC) Chr 12: 6.54 – 6.56 Mb Chr 6: 125.15 – 125.16 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Intermediate filament family orphan 1 is a protein that in humans is encoded by the IFFO1 gene. IFFO1 has uncharacterized function and a weight of 61.98 kDa. [5] IFFO1 proteins play an important role in the cytoskeleton and the nuclear envelope of most eukaryotic cell types. [6]

Gene

IFFO in human is located on the minus strand at Chromosome 12p13.3. The protein contains 17,709 nucleotide bases that encodes for 570 amino acids. The basal isoelectric point is 4.83. [7] IFFO1 contains a highly conserved filament domain that spans 299 amino acids from amino residue 230 to 529. [8] This region has been identified as pfam00038 conserved protein domain family. [9] Due to alternative splicing, there are 7 isoforms of IFFO1 in humans with 10 typical coding exons.

IFFO1 locus on Chromosome 12p13.3 Map of Chromosome 12.png
IFFO1 locus on Chromosome 12p13.3

Aliases

IFFO1 is also called Intermediate Filament Family Orphan Isoform X1, Intermediate Filament Family Orphan, HOM-TES-103, Intermediate Filament-Like MGC: 2625, and Tumor Antigen HOM-TES-10. [10]

Homology

Orthologs

The gene is found to be highly conserved. The most distant orthologs are found in fish and sharks (cartilaginous fishes) such as Callorhinchus milii. [11] Very low percentages of sequence coverage and identity of the gene's orthologs in fungi and invertebrates suggest that the gene was lost in those organisms. [12] Therefore, it is highly probable that IFFO1 originated in vertebrates.

Genus/SpeciesCommon NameDivergence from Human (MYA)Length (aa)SimilarityIdentityNCBI Accession
Homo sapiens HumanN/A570100%100%XP_006719036.1
Mus musculus Mouse92.356393%95%XP_006506337.2
Lipotes vexillifer Baiji dolphin94.257392%95%XP_007469487.1
Loxodonta africana African bush elephant98.757494%96%XP_003410688.1
Chrysemys picta bellii Painted turtle29655778%84%XP_005291351.1
Pseudopodoces humilis Ground tit29653176%81%XP_005523902.1
Python bivittatus Burmese python29657075%82%XP_007429680.1
Haliaeetus leucocephalus Bald eagle29653774%79%XP_010565842.1
Rana catesbeiana American bull frog371.251125%44%BAB63946.1
Ambystoma mexicanum Axolotl371.237224%42%AFN68290.1
Notophthalmus viridescens Eastern newt371.249623%45%CAA04656.1
Danio Rerio Zebra fish400.164062%71%XP_690165.5
Poecilia formosa Amazon molly400.164057%65%XP_007550181.1
Callorhinchus milii Australian ghostshark462.551262%73%XP_007896103.1

Paralogs

One paralog named IFFO2 has been found in humans. The paralog is found to have 99% similarity and 99% coverage when compared to IFFO1. The paralogous sequence is highly conserved, all the way back to fish and amphibians.

Evolution

Multiple sequence alignments indicated that the Proline-Rich region from amino residues 39 to 61 near the 5' end of the sequence is highly conserved in both close and distant orthologs. [13] In addition, the filament region near the 3' end of the sequence is also highly conserved. Of the 42 conserved amino acid residues found within the IFFO1 sequence, 33 of them are found in the filament region.

When compared to fibrinogen and Cytochrome C (CYCS), IFFO1 is evolving at a moderate rate. The evolutionary history of fibrinogen demonstrates that it is a fast evolving gene, while cytochrome C has been found to be a slow evolving gene. With the most distant ortholog found to be in the Australian ghostshark, IFFO1 gene duplication took place in fish, which diverged from humans 462.5 million years ago. [14]

Protein

Structure

The predicted secondary structure of the protein consists mostly of alpha helices (47.19%) and random coils (44.74%). The building block of intermediate filaments are elongated coiled-coil dimer consisting of four consecutive alpha-helical segments. [15]

Tertiary structure of IFFO1 protein as predicted by PHYRE2 program Predicted Tertiary Structure.png
Tertiary structure of IFFO1 protein as predicted by PHYRE2 program

Structurally, it is most similar to 1GK4, which is chain A of the human vimentin coil 2b fragment (Cys2). [16] Vimentin is a class-II intermediate filament that is found in various non-epithelial cells, especially mesenchymal cells. [17] The vimentin protein is also responsible for maintaining cell shape, integrity of the cytoplasm, and stabilizing cytoskeletal interactions. [18] Its 1A subunit, most similar to IFFO1 protein, forms a single, amphipatic alpha-helix that's compatible with a coiled-coil geometry. It is speculated that this chain is involved in specific dimer-dimer interactions during intermediate filament assembly. A "YRKLLEGEE" domain on the C-terminus is found to be important for the formation of authentic tetrameric complexes and also for the control of filament width during assembly. [19]

Expression

Based on experimental data on normal tissues in the human body, IFFO1 gene is highly expressed in the cerebellum, cerebral cortex, and especially in the spleen. Medium expression is seen in several areas such as the adrenal gland, colon, lymph nodes, thymus, and ovary. The tissue areas that had the relatively low expression includes CD4 and CD8 T-cells, epidymal cells, the heart, and the stomach. Extremely low levels of expression were observed in tissues obtained from fetus, kidney, testis, thyroid, and especially in the salivary gland. However, the gene has been found to be highly expressed in chondrosarcoma. [20] Chondrosarcoma is the cancer of the cells that generate collagen. Therefore, there seems to be an association between IFFO1's filamentous characteristic and chondrosarcoma.

Post-translational modifications

One nuclear export signal is predicted to be located at Leucine 141. [21] The IFFO1 protein is predicted to have one 11-amino acid long nuclear localization signal at 373. [22] Based on evidence, the protein is predicted to have high nuclear discrimination. [23] One negative charge acidic cluster was found from amino residue 435 to 447. One repetitive sequence PAPLSPAGP appears twice at 40 to 48 and then again from 159 to 166. This proline-rich region is found to be highly conserved. One long amino acid multiplets of 5 prolines is found at 549.

4 ubiquitination sites are found on Four different Lysine residues. They can be found at Lys78, Lys103, Lys113, Lys339. [24] Experimentally, there was evidence of 43 phosphorylation sites located on 31 serines, 7 threonines, and 5 tyrosines. [25] Furthermore, the evidence has shown with high confidence that Ser533 is a phosphorylation site specifically for protein kinase C. The phosphorylation site at Ser162 also acts as a )-glycosylated site. This type of glycosylation functions to have proteins fold properly, stabilizes the protein, and plays a role in cell-cell adhesion. [26] 4 sumolyated amino acids were found at Leu249, Leu293, Leu298, and Leu325. [27] Sumolation have several effects including interfering with the interaction between the protein’s target and its partner or provide a binding site for an interacting partner, causing conformational changes of the modified target, and facilitating or antagonizing ubiquitinization. [28] 5 glycation sites were predicted to be at Lys78, Lys256, Lys305, Lys380, and Lys478. End productions of glycation are involved in protein conformation changes, loss of function, and irreversible crosslinking. [29]

Interactions

Evidence from two-hybrid screening exists for four protein interactions with IFFO1. [30]

Another protein interaction with ubiquitin C was found from affinity capture-MS assay. [37]

Clinical relevance

The IFFO1 gene has not been found to be associated with any particular diseases.

Related Research Articles

<span class="mw-page-title-main">Intermediate filament</span> Cytoskeletal structure

Intermediate filaments (IFs) are cytoskeletal structural components found in the cells of vertebrates, and many invertebrates. Homologues of the IF protein have been noted in an invertebrate, the cephalochordate Branchiostoma.

<span class="mw-page-title-main">QRICH1</span> Protein found in humans

QRICH1, also known as Glutamine-rich protein 1, is a protein that in humans is encoded by the QRICH1 gene. One notable feature of this protein is that it contains a Caspase Activation Recruitment Domain, also known as a CARD domain. As a result of having this domain, QRICH1 is believed to be involved in apoptotic, inflammatory, and host-immune response pathways.

<span class="mw-page-title-main">CCDC94</span> Protein found in humans

Coiled-coil domain containing 94 (CCDC94) is a protein that in humans is encoded by the CCDC94 gene. The CCDC94 protein contains a coiled-coil domain, a domain of unknown function (DUF572), an uncharacterized conserved protein (COG5134), and lacks a transmembrane domain.

Transmembrane protein 33 is a protein that in humans, is encoded by the TMEM33 gene, also known as SHINC3. Another name for the TMEM33 protein is DB83.

<span class="mw-page-title-main">CCDC138</span> Protein found in humans

Coiled-coil domain-containing protein 138, also known as CCDC138, is a human protein encoded by the CCDC138 gene. The exact function of CCDC138 is unknown.

<span class="mw-page-title-main">Coiled-coil domain containing 42B</span> Protein found in humans

Coiled Coil Domain Containing protein 42B, also known as CCDC42B, is a protein encoded by the protein-coding gene CCDC42B.

<span class="mw-page-title-main">EVI5L</span> Protein-coding gene in the species Homo sapiens

EVI5L is a protein that in humans is encoded by the EVI5L gene. EVI5L is a member of the Ras superfamily of monomeric guanine nucleotide-binding (G) proteins, and functions as a GTPase-activating protein (GAP) with a broad specificity. Measurement of in vitro Rab-GAP activity has shown that EVI5L has significant Rab2A- and Rab10-GAP activity.

<span class="mw-page-title-main">C14orf80</span> Protein-coding gene in the species Homo sapiens

Uncharacterized protein C14orf80 is a protein which in humans is encoded by the chromosome 14 open reading frame 80, C14orf80, gene.

<span class="mw-page-title-main">FAM76A</span> Protein-coding gene in the species Homo sapiens

FAM76A is a protein that in Homo sapiens is encoded by the FAM76A gene. Notable structural characteristics of FAM76A include an 83 amino acid coiled coil domain as well as a four amino acid poly-serine compositional bias. FAM76A is conserved in most chordates but it is not found in other deuterostrome phlya such as echinodermata, hemichordata, or xenacoelomorpha—suggesting that FAM76A arose sometime after chordates in the evolutionary lineage. Furthermore, FAM76A is not found in fungi, plants, archaea, or bacteria. FAM76A is predicted to localize to the nucleus and may play a role in regulating transcription.

<span class="mw-page-title-main">C12orf60</span> Protein-coding gene in humans

Uncharacterized protein C12orf60 is a protein that in humans is encoded by the C12orf60 gene. The gene is also known as LOC144608 or MGC47869. The protein lacks transmembrane domains and helices, but it is rich in alpha-helices. It is predicted to localize in the nucleus.

<span class="mw-page-title-main">C21orf58</span> Protein-coding gene in the species Homo sapiens

Chromosome 21 Open Reading Frame 58 (C21orf58) is a protein that in humans is encoded by the C21orf58 gene.

<span class="mw-page-title-main">TEX9</span> Protein-coding gene in the species Homo sapiens

Testis-expressed protein 9 is a protein that in humans is encoded the TEX9 gene. TEX9 that encodes a 391-long amino acid protein containing two coiled-coil regions. The gene is conserved in many species and encodes orthologous proteins in eukarya, archaea, and one species of bacteria. The function of TEX9 is not yet fully understood, but it is suggested to have ATP-binding capabilities.

<span class="mw-page-title-main">C4orf51</span> Protein-coding gene in the species Homo sapiens

Chromosome 4 open reading frame 51 (C4orf51) is a protein which in humans is encoded by the C4orf51 gene.

Chromosome 1 open reading frame (C1orf167) is a protein which in humans is encoded by the C1orf167 gene. The NCBI accession number is NP_001010881. The protein is 1468 amino acids in length with a molecular weight of 162.42 kDa. The mRNA sequence was found to be 4689 base pairs in length.

<span class="mw-page-title-main">WD Repeat and Coiled Coil Containing Protein</span> Protein-coding gene in humans

WD Repeat and Coiled-coiled containing protein (WDCP) is a protein which in humans is encoded by the WDCP gene. The function of the protein is not completely understood, but WDCP has been identified in a fusion protein with anaplastic lymphoma kinase found in colorectal cancer. WDCP has also been identified in the MRN complex, which processes double-stranded breaks in DNA.

<span class="mw-page-title-main">C16orf90</span> Protein-coding gene in the species Homo sapiens

C16orf90 or chromosome 16 open reading frame 90 produces uncharacterized protein C16orf90 in homo sapiens. C16orf90's protein has four predicted alpha-helix domains and is mildly expressed in the testes and lowly expressed throughout the body. While the function of C16orf90 is not yet well understood by the scientific community, it has suspected involvement in the biological stress response and apoptosis based on expression data from microarrays and post-translational modification data.

<span class="mw-page-title-main">Fam89A</span> Human protein and gene

ProteinFAM89A is a protein which in humans is encoded by the FAM89A gene. It is also known as chromosome 1 open reading frame 153 (C1orf153). Highest FAM89A gene expression is observed in the placenta and adipose tissue. Though its function is largely unknown, FAM89A is found to be differentially expressed in response to interleukin exposure, and it is implicated in immune responses pathways and various pathologies such as atherosclerosis and glioma cell expression.

<span class="mw-page-title-main">CCDC121</span> Protein found in humans

Coiled-coil domain containing 121 (CCDC121) is a protein encoded by the CCDC121 gene in humans. CCDC121 is located on the minus strand of chromosome 2 and encodes three protein isoforms. All isoforms of CCDC121 contain a domain of unknown function referred to as DUF4515 or pfam14988.

<span class="mw-page-title-main">C13orf46</span> C13of46 Gene and Protein

Chromosome 13 Open Reading Frame 46 is a protein which in humans is encoded by the C13orf46 gene. In humans, C13orf46 is ubiquitously expressed at low levels in tissues, including the lungs, stomach, prostate, spleen, and thymus. This gene encodes eight alternatively spliced mRNA transcript, which produce five different protein isoforms.

<span class="mw-page-title-main">SCRN3</span> Protein-coding gene in the species Homo sapiens

Secernin-3 (SCRN3) is a protein that is encoded by the human SCRN3 gene. SCRN3 belongs to the peptidase C69 family and the secernin subfamily. As a part of this family, the protein is predicted to enable cysteine-type exopeptidase activity and dipeptidase activity, as well as be involved in proteolysis. It is ubiquitously expressed in the brain, thyroid, and 25 other tissues. Additionally, SCRN3 is conserved in a variety of species, including mammals, birds, fish, amphibians, and invertebrates. SCRN3 is predicted to be an integral component of the cytoplasm.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000010295 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038271 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "IFFO1 Gene - GeneCards | IFFO1 Protein | IFFO1 Antibody".
  6. Steinert, Peter M.; Roop, Dennis R. (1988). "Molecular and Cellular Biology of Intermediate Filaments". Annual Review of Biochemistry. 57: 593–625. doi:10.1146/annurev.bi.57.070188.003113. PMID   3052284.
  7. "PhosphoSitePlus". Archived from the original on 2019-04-03. Retrieved 2019-05-27.
  8. "PREDICTED: Intermediate filament family orphan 1 isoform X7 [Homo sapi - Protein - NCBI".
  9. "CDD Conserved Protein Domain Family: Filament".
  10. "IFFO1 Gene - GeneCards | IFFO1 Protein | IFFO1 Antibody".
  11. "BLAST: Basic Local Alignment Search Tool".
  12. "IFFO1 Gene - GeneCards | IFFO1 Protein | IFFO1 Antibody".
  13. http://seqtool.sdsc.edu/CGI/BW.cgi%5B‍%5D
  14. http://timetree.org/
  15. Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U, Burkhard P (March 2002). "Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly". The EMBO Journal. 21 (6): 1255–66. doi:10.1093/emboj/21.6.1255. PMC   125921 . PMID   11889032.
  16. Wang Y, Addess KJ, Chen J, Geer LY, He J, He S, Lu S, Madej T, Marchler-Bauer A, Thiessen PA, Zhang N, Bryant SH (January 2007). "MMDB: annotating protein sequences with Entrez's 3D-structure database". Nucleic Acids Research. 35 (Database issue): D298–300. doi:10.1093/nar/gkl952. PMC   1751549 . PMID   17135201.
  17. "VIM - Vimentin - Homo sapiens (Human) - VIM gene & protein".
  18. "VIM vimentin [Homo sapiens (human)] - Gene - NCBI".
  19. Herrmann H, Strelkov SV, Feja B, Rogers KR, Brettel M, Lustig A, Häner M, Parry DA, Steinert PM, Burkhard P, Aebi U (May 2000). "The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly". Journal of Molecular Biology. 298 (5): 817–32. doi:10.1006/jmbi.2000.3719. PMID   10801351.
  20. "EST Profile - Hs.15243".
  21. "NetNES 1.1 Server".
  22. "NLS Mapper". Archived from the original on 2021-08-10. Retrieved 2015-05-09.
  23. "PSORT WWW Server".
  24. "IFFO1 Gene - GeneCards | IFFO1 Protein | IFFO1 Antibody".
  25. Blom N, Gammeltoft S, Brunak S (December 1999). "Sequence and structure-based prediction of eukaryotic protein phosphorylation sites". Journal of Molecular Biology. 294 (5): 1351–62. doi:10.1006/jmbi.1999.3310. PMID   10600390. Archived from the original on 2021-08-10. Retrieved 2015-05-07.
  26. Chang C, Stewart RC (July 1998). "The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes". Plant Physiology. 117 (3): 723–31. doi:10.1104/pp.117.3.723. PMC   1539182 . PMID   9662515.
  27. "GPS-SUMO: Prediction of SUMOylation Sites & SUMO-interaction Motifs". Archived from the original on 2013-05-10. Retrieved 2015-05-09.
  28. Geiss-Friedlander R, Melchior F (December 2007). "Concepts in sumoylation: a decade on". Nature Reviews. Molecular Cell Biology. 8 (12): 947–56. doi:10.1038/nrm2293. PMID   18000527. S2CID   30462190.
  29. Münch G, Schicktanz D, Behme A, Gerlach M, Riederer P, Palm D, Schinzel R (October 1999). "Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library". Nature Biotechnology. 17 (10): 1006–10. doi:10.1038/13704. PMID   10504703. S2CID   818528.
  30. "IFFO1 Gene - GeneCards | IFFO1 Protein | IFFO1 Antibody".
  31. "2 items (Homo sapiens) - STRING database".[ permanent dead link ]
  32. Jackson TR, Brown FD, Nie Z, Miura K, Foroni L, Sun J, Hsu VW, Donaldson JG, Randazzo PA (October 2000). "ACAPs are arf6 GTPase-activating proteins that function in the cell periphery". The Journal of Cell Biology. 151 (3): 627–38. doi:10.1083/jcb.151.3.627. PMC   2185579 . PMID   11062263.
  33. "2 items (Homo sapiens) - STRING database".[ permanent dead link ]
  34. "2 items (Homo sapiens) - STRING database".[ permanent dead link ]
  35. Elmaagacli AH, Koldehoff M, Zakrzewski JL, Steckel NK, Ottinger H, Beelen DW (January 2007). "Growth factor-independent 1B gene (GFI1B) is overexpressed in erythropoietic and megakaryocytic malignancies and increases their proliferation rate". British Journal of Haematology. 136 (2): 212–9. doi: 10.1111/j.1365-2141.2006.06407.x . PMID   17156408. S2CID   40412593.
  36. "2 items (Homo sapiens) - STRING database".[ permanent dead link ]
  37. "2 items (Homo sapiens) - STRING database".[ permanent dead link ]